
NtEd a new and free musical score editor for Linux
Dr.-Ing. Jörg Anders

Chemnitz University of Technology, Fakulty of Computer Science
Strasse der Nationen 62, 09107 Chemnitz, Germany

ABSTRACT

NtEd[2] is a WYSIWYG musical score editor, which
can support music teachers and music students to learn
reading notes, to learn playing an instrument, and to
compose music. Apart from all other WYSIWYG musi-
cal score editors it is cost free because it is licensed un-
der GPL[1] and runs on Linux operating system, which
is cost free, too. Thus, you can save money which is
often a real obstacle for using such software in class
rooms, because the usual WYSIWYG musical score ed-
itors are very expensive.

NtEd lets you insert notes to create a musical score,
play the score, import MIDI files, and record the score
from a MIDI keyboard attached to your sound adapter.

This article gives a short introduction into NtEd, ex-
plains the difficulties in writing such a software, and
indicates how NtEd solves them.

Keywords: Musical Score Editor, WYSIWYG Editor,
ALSA, Linux, Open Source

Fig 1: The NtEd main window

1. USING NtEd

You can get NtEd from [2] for free. You can get both,
the ready packages and the C++ source. The main
window [Fig. 1] lets you insert notes by means of the
mouse or alternatively by PC keyboard. As you can
see NtEd allows you also to place chord names and gui-
tar chord diagrams. Furthermore, you can use drum
notes. By means of the toolbox in the right bottom
corner you can select the note length, the accidentals
like sharp, flat, natural, double flat a.s.o., the articula-
tions like staccato, tenuto, portato a.s.o., and the note
style for drum notes.

By clicking pairs of notes you can connect them with
a tie (legato). You can build chords and tuplets (2 -
13). You can place repeat signs and rests of different
length.

NtEd places the material onto different systems and
pages. The user can continuously change the size of the
musical signs and he/she can choose the paper format.



NtEd allows up to 4 voices per staff:

Fig 2: Two Voices in a staff

Furthermore, the user can attach an instrument to
every staff. Thus, a whole orchestra is built. The play
button starts replay via ALSA (Advanced Linux Sound
Architecture)[3]. If some of the instruments are not in
C tuning, NtEd allows you to add an offset to the pitch.

Other interesting features of NtEd are:

• Transpose You can transpose the score or parts
of the score to a new key.

• Mute The teacher can mute some staves. This
way the pupils can recognize how the single in-
struments contribute to the whole sound.

• Copy/Paste You can select groups of notes
and copy them somewhere, also between different
scores.

• Extract staves If the composition is ready it is
necessary to create the notes for every single in-
strument[Fig. 3]

Fig 3: The Piano excerpt

To print the score there are 2 ways:

1. There is a print function on some menu which
prints the score such that the printer output
matches exactly what you see on display.

2. You can export the score to LilyPond[4]. Lily-
Pond is a text based score editor, which is also
cost-free (GPL). It creates the score from a text
transcription of the music. For instance, the text:

\relative c’ {\clef treble

\key a \major \time 2/4

e’4 cis cis2 d4 b b2

a4 b cis d e e e2

}

produces the following PDF output:

Fig 4: The LilyPond output

Thus, one can export the score to LilyPond, create
the PDF by means of the LilyPond processor and then
print the PDF. Why is it useful: The LilyPond output
is better than the NtEd output, because LilyPond as
an offline renderer takes as much time as needed to cre-
ate the best results. So, you can regard LilyPond as a
beautifier.

But there is a small drawback: Because LilyPond
uses its own placing algorithms and its own music fonts
the WYSIWYG principle is broken.

NtEd is able to create:

• PostScript

• PDF

• SVG

• PNG

• MIDI

It can import:

• MusicXML[6] (with restrictions)

• MIDI

Especially the latter is very helpful for pupils and mu-
sic students. Most people who play an instrument are
unable to play a piece of music without notes. They
cannot hear what is played. But there are dozens of
MIDI files in Internet. By reconstructing the musical
score from these MIDI files, NtEd gives such musicians
the possibility to play the music.

A further interesting feature is: Recording the music
from MIDI keyboard. If a MIDI keyboard is attached
to the sound adapter, the user can play on this key-
board and NtEd creates the appropriate notes. On one
hand this eases the score creation. On the other hand
a teacher can give his pupils an idea of how even live
played music can be notated.

2. WHY IS IT SO DIFFICULT?

There are only a few WYSIWYG musical score editors.
And the best ones are relatively expensive. One reason
is: There are potentially only a few musicians which are
willing to use a computer.

Another reason is: It is difficult. Sometimes more
difficult than writing a text editor.

This chapter will give a brief overview of the main
problems. Most of them come from timing restrictions.
A WYSIWYG user expects a program reaction imme-
diately after the mouse click. That is, you have at most
50 ms from mouse click till program reaction. All plac-
ing decisions have to take place during these 50 ms.



Vertical Alignment

In contrast to a text editor, the program must always
keep a watch on the vertical alignment. In following
example there are 2 tied quarter notes in first staff and
one eighth in 2nd staff:

Fig 5: Before alignment

Now the user adds 4 32ths and a quarter into the 2nd
staff:

Fig 6: After alignment

The 2nd quarter in 1st staff must be replaced, be-
cause it sounds together with the quarter in 2nd staff.
But even worse: The tie, a complicated filled Bezier
curve pair, must be re-computed. And at end of line
it can happen the line is too long and must be broken.
This is still more complicated because you can move
only whole measures, not parts of a measure. And think
about the undo and redo functionality: All of this must
be reversible, including the line break!

Horizontal Grouping

Horizontal grouping is almost unknown in text proces-
sors. Have a look at Fig 6: There are ties and beams
which group notes together. Imagine the user moves up
the 2nd note in 1st staff and inserts a 32th rest in 2nd
staff:

Fig 7: After modification

The tie must be broken because it can exist only be-
tween notes on the same line. But the beam must be
broken, too. And bear in mind: All this must be re-
versible by undo button! This requires continuous re-
computation of such groups.

3. NtEd SOLUTIONS

NtEd handles the vertical alignment by means of a com-
plicated system of dynamically enlargeable arrays. If
the user changes the score, all notes and rests are tagged
with the time they should sound. This happens staff by
staff. In a 2nd step all notes are placed into a position
array, which can be regarded as a 2 dimensional grid.
The example in Fig. 6 would result in:

Fig 8: The position array

Elements which have the same time appear in the
same column. Every symbol has its bounding box. The
position algorithm computes the needed space for ev-
ery column by determine the maximum bounding box
width per column. From this information the position
of each column is computed and the symbols in this
column are tagged with this position.

This takes place every time the user modifies the
score. The times are computed, the array is build, the
positions are computed. And all this is fast enough to
meet the 50 ms requirement. This holds even if the
score is the first movement of Beethoven’s 5th sym-
phony with 12 staves and 500 measures! To save time
NtEd tries to keep track of already positioned staves to
avoid double positioning.

The handling of horizontal grouping is still more sur-
prising: Before positioning there isn’t any single infor-
mation where to place beams. Because the beaming
follows certain musical rules, the beams are computed
after all elements are placed.

For ties the notes are internally connected by point-
ers. As you can imagine this is a source of many crashes
especially because ties can be removed implicitly as
shown in Fig. 7.

To draw the ties NtEd uses the Bezier curves offered
by the Cairo library[5]. This is a very fantastic and very
fast graphics library. It can draw lines, curves, paths,
circles, and predefined fonts. And it can fill all these
elements, independent of whether they are concave or
convex. And it can antialias these elements. This is
important, because it is impossible to give the signs
a smooth appearance by using only black and white
pixels. Intermediate colors must be computed as an
enlargement shows:



Fig 9: Antialias

Believe it or not: If the user moves upward a sin-
gle note as happened with the tied quarter in Fig. 6
the positioning takes place, the whole page is cleared
(filled with white color), and the score is redrawn with
antialias. And all this is so fast, that the user has the
impression to only move a single note upward. The only
”trick” is the usage of a double buffer to avoid flickering.

Other Problems

There are of course much more problems. The beams
and especially the beam slope must be computed. Re-
gard Figure 10:

Fig 10: Different beams

As you can see the beam slope depends on the posi-
tion of the beamed notes. NtEd offers 7 different slopes
between -30◦ and 30◦. Believe it or not: Although there
are only 50 ms available, NtEd tests each of the 7 slopes
and chooses that one, which causes the smallest change
of the stem length compared with the un-beamed notes.

And there is another issue. The length of the beam
groups depends on the time signature:

Fig 11: beam length

Here is nothing to compute! How many notes are
beamed on which time signature is a result of a long
history of note engraving. NtEd has an internal table
which determines where to break a beam depending on
the time signature.

Of course, the user can overwrite these rules in spe-
cial cases. The same holds for the slope.

Some further problems are caused by polyphonic mu-
sic. For certain instruments and choir music it is usual
to place different voices on one staff. NtEd offers up to
4 voices per staff. Imagine the user places a first voice:

Fig 12: Single voice

Then he/she inserts some notes in the 2nd voice:

Fig 13: Polyphony

First of all a stem decision must be made. A musi-
cian expects the notes belonging to one voice to have
the same stem direction. Note, the stem direction can
change in next measure if the voices cross. Therefore,
NtEd computes the stem direction on a measure-by-
measure basis. To do this, it builds the average pitch
and uses the stem up policy for the voice with higher
average pitch.

If the voice count increases this problem becomes
more and more difficult. In case of 4 voices it is of-
ten up to the user to overwrite the stem direction or to
break some beams to avoid line crossing.

I regard it as impossible to solve all problems auto-
matically. In general this is a task left to the user, even
if a very professional (and very expensive) musical score
editor is used.

Figure 13 discovers a further problem: Regard the
first notes of every voice. They sound at the same time.
But there is no place to put them at the same horizontal
position. This is a known problem of music notation.
So-called microshifts must be applied. To detect such
conflicts and to compute the microshifts every column
of every voice must be compared with the other voices.
Thus, the computation complexity increases with the
square of the number of voices. Bear in mind: All must
be done during 50 ms! So, the limited computation
time limits the number of voices.

4. MIDI IMPORT

As already stated, NtEd can import MIDI files. Users
expect this feature as a matter of course. But recon-
structing the score from MIDI file is a very difficult
task. A MIDI file can be regarded as an endless paper
with holes, like the paper roles used in mechanical pi-
anos. Every line represents a pitch (D, G, and C in this
case):



Fig 14: MIDI data

The horizontal direction represents the time. And
the duration of a quarter note is know by a field in
MIDI file header. The score looks like this:

Fig 15: Score of MIDI data

As you can see, some very intelligent decisions must
be made:

1. Because D and G end after C begins they belong
to different voices.

2. There seems to be no conflict between the leading
D and G and the 2nd G, i.e. they belong to the
same voice.

3. There is a conflict between the leading D and G,
but they start and stop at the same time, i.e. they
build a chord.

4. The length of the chord is a quarter + an eighth
+ a 16th, which can be expressed by a double
dotted quarter.

5. The length of the last D is a quarter + a 16th
which can only be expressed by tieing 2 notes to-
gether.

6. The gaps on paper must be expressed by appro-
priate musical rest symbols.

As you can imagine it is not quite easy to perform the
MIDI to score transformation. And Figure 14 shows a
relatively simple example. The problem is still much
more complicated if the MIDI file is produced by a mu-
sician playing a keyboard. Imagine the start of a C
scale:

Fig 16: A C scale

The MIDI data should look like this:

Fig 17: Ideal MIDI C scale

But no musician plays it this way. Most musicians
release the keys a bit - say a 32th - too early (the last
32th is filled by reverberation and sustain effects):

Fig 18: Bad MIDI C scale

An exact MIDI ⇒ score transformation would result
in a system of double dotted eighths followed by a 32th
rest:

Fig 19: Bad MIDI C scale

Note, this is unplayable! NtEd has some heuristics
which recognize the situation and reproduce the correct
C scale as shown in Figure 16.

5. OUTLOOK

There are still some missing features. A lot of addi-
tional musical signs must be implemented. Fingering is
important and surprisingly many users request special
notation for lute or Gregorian notes.

But my dream is: OMR (Optical Music Recognition).
It would help a lot if the user could scan a sheet of mu-
sic and NtEd could read it. Many commercial musical
score editors offer this feature, even though as very ex-
pensive additional module.



6. MOTIVATION

At last one may ask: Why does the author create such
a program? Indeed, my field of activity is computer
networks and distributed systems which has less to do
with music.

I have to lead tutorials which require programming

knowledge. In the recent times it became more and
more difficult to be better than the students in writing
programs. Therefore, some time ago decided to start to
implement a sufficient complicated object oriented pro-
gram. I decided for musical score editor because there
exist only a few programs and especially on Linux there
are only 2 WYSIWYG musical score editors, at all.

References

[1] The GNU public license:
http://www.gnu.org/licenses/gpl-2.0.html

[2] Jörg Anders: NtEd
http://vsr.informatik.tu-chemnitz.de/staff/jan/nted/nted.xhtml

[3] ALSA: Avanced Linux Sound Architecture
http://www.alsa-project.org

[4] LilyPond:
http://www.lilypond.org

[5] The Cairo library:
http://cairographics.org

[6] MusicXML:
http://www.recordare.com


