
ABSTRACT

This paper presents a software quality support tool, a
Java source code evaluator and coder profiler based on
computational intelligence techniques.

It represents a new approach to automatically evaluate
and improve source code quality and consequently the
software product. To do so, it employs traditional and
new source code metrics for modelling its content in
context. Also employs an Artificial Neural Network for
data classification and an Expert System on the
recommendation build phase.

The objective is to provide the software development
industry with a new software tool for software quality
improvement extending the source code metrics value
through computational intelligence.

Keywords: Software metrics, artificial intelligence,
neural networks, clustering algorithms, expert systems.

1. INTRODUCTION

n order to show that a computer program is mature and
free of bugs, and that Software Requirements

Specifications have been met (SRS), it will be necessary
to have a strategy to support this process. The goal for
any software project is to accomplish the above
mentioned requirements, which means to get the best

quality. Historically, the word “quality” has been adapted
and has evolved together with the different technologies
to which it has been applied. In the thirties, the
metallurgical industry defined quality as a compliance to
requirements; any deviation from such requirements
meant loss of quality or limited trust in product quality.
The consequence of this was lower costs and less rework
[2]. In the fifties, quality costs increased exponentially.
Therefore, specifications including tolerance (i.e., a
deviation from perfection) were proposed. Inspections
ensured that the product fell within a predefined
tolerance. The goal of such inspections was to avoid
corrections through the identification of product
deviations from the original specification [3]. The
creation of software does not imply serial production
costs, but it is an intensive activity [4]. It requires the
interaction and coordination of several specialists during
all development stages. In the following subsections,
different perspectives of software quality are presented.

Software Quality: It can be said that, as an
adaptation and extension of classical definitions, the
software industry focuses on the following principles: 1.
Software requirements are the quality metric
fundamental. Lack of compliance with requirements is a
quality failure. 2. Standards establish development
criteria. Absence of standards means, in many cases, low
quality [5]. 3. Indirect measures (e.g. usability,
maintainability, etc.) and direct measures (e.g. lines of
code). Software Quality Assurance (SQA) are a way of
encompassing the software engineering processes. It

I

Enhancing Source Code Metrics Scope Through Artificial Intelligence

Martin AGÜERO
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Franco MADOU
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Gabriela ESPERON
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Daniela LOPEZ DE LUISE
AI Group, Universidad de Palermo

Buenos Aires, Argentina

mainly consists of monitoring and developing
information and administration tasks [6]. Inspection and
metrics make software projects successful due to their
excellent quality control results. Even though intensive
software quality control increases costs, it is an activity
with high Return On Investment (ROI). Empiric
verification without data indicators and measures make
theories and propositions remain abstract [7].

Economic impact of inadequate infrastructure for
software testing [9] Today the complexity of software is
increasing at an alarming rate. Quality is defined as a
bundle of attributes and the level of those attributes holds
a positive value. Few companies are interested in
advanced testing techniques as a way of forecasting field
reliability based on test data and of calculating defect
density to benchmark quality. Standardized automated
testing scripts along with standard metrics would also
provide a more consistent method to determine when to
stop testing. Most developers prefer early bug detection,
at the same developmental stage. Based on the software
community and user surveys, the US annual costs of an
inadequate infrastructure for software testing is estimated
to range from $22.2 to $59.5 billion1. Over half of these
costs are borne by software users in the form of error
avoidance and mitigation activities. The remaining costs
are borne by software developers and reflect the
additional test resources that are consumed due to
inadequate testing tools and methods.

Intelligent Java Analyzer (IJA): This new software
tool prototype employs traditional and new source code
metrics to model its content in context. Metrics results
are discretized depending on deviations from the
programming language specification. Thresholds are set
to obtain distances from the preferred code style. A
dataset built by Expectation Maximization (EM) data
mining algorithm is the reference data source to train a
neural network. A Multi Layer Perceptron (MLP)
artificial neural network (NN) classifies the source code
instances on clusters formerly established by the training
set. In a programmed self-tuning process, the prototype
can adjust each cluster profile, determining a dynamic
distinctive identity for every classification output (NN).
The classification phase groups source code instances that
share common attributes of their syntaxes. In those cases
where the attribute reveals a sign of erroneous language
handling, a recommendation phase is activated. An expert
system pre-loaded with rules analyzes the classification
results and identifies every inaccurate source code usage.
The rule engine also builds a set of recommendations

1The impact estimates do not reflect the “costs” associated to mission

critical software where any problem may lead to extremely high costs
such as loss of life or catastrophic failure.

based on key features detected in the code. The analysis
process is completed with a report-style output advising
the author on convenient procedures to improve the
source code.

2. ARCHITECTURE

IJA prototype is divided into 9 modules: 6 for core
functions and 3 for support services. Fig. 1 shows
component relations, storage units and external
interfaces. The analysis is executed in two main steps:
classification and recommendation, both of which are
coordinated by a Services Manager module.

Fig. 1 Intelligent Java Analyzer (IJA) architecture

It is a flexible and adaptable tool due to its design and
XML configuration files. It could be used not only for
scientific requirements but also to suit the needs of any
firm. The whole tool is built on Enterprise Java
technology platform; it runs on any JEE 1.5 servlet
container. Its design maximizes CPU load and reduces
memory requirements, enabling the quick analysis of
large datasets. The following sections describe each
module design and their main features.

Content Sequencer Module: is an IJA extension of
Java Collection API interface (Application Programming
Interface). It standardizes, encapsulates, and serializes
source code files (SCF) content synchronically in order to
process it in a transparent way. It can be configured to
define specific word separator tokens.

Syntax Analyzer (Parser): The first component of
the classification phase is the Syntax Analyzer. It
processes and extracts some context features. It also
implements a parser algorithm that translates Java syntax
into the model proposed by W. A. Woods: Augmented

Transition Networks (ATN) [10].This applies State and
Memento design patterns [11]. The algorithm detects
some reserved words, symbols and structures and
changes to a specific state.

The IJA modular design makes it possible to extend
all its functionalities to other languages just by selecting a
specific Syntax Analyzer module implementation for
each programming language.

Software Metrics Analyzer: It is the calculus
component and the analyst’s chosen algebra operations
translator. According to the actual XML configuration, it
generates software metrics by executing mathematical
operations and using the results obtained from the
previous module. For example, a metric named v3 is the
division between the quantity of methods and the quantity
of methods with names starting with lowercase2. Besides
some new metrics, the software also implements
traditional metrics, e.g. v11 assesses the rate between the
number of comments collected in a SCF and the number
of Javadocs in it. At this point, the analyst can set a
weighting value to every system operator. The set of
metrics defined is important to model SCF quality [13].

Results Evaluator / Normalizer: The Results
Evaluator module normalizes the specific numeric values
for each metric between -1 and 1. There are predefined
thresholds —or quality class bounds— to help evaluate
the result quality. Each SCF is classified using the
metric numeric results and the thresholds. Floating labels
provide a code identification reference (ID) of the SCF
accumulated in each sequence. Finally, the data is
exported into an arff format so that the results (attribute-
relation file format) are compatible with the Intelligent
Classifier Module.

Intelligent Classifier (Neural Network): This is the
last step into the classification phase analysis process. It
has a Multi Layer Perceptron (MLP). This Neural
Network with backpropagation, was trained using the
clusters derived automatically by an Expectation
Maximization clustering algorithm (EM) [14].

Rules Engine: The last component is an Expert
System (EXSYS) module. It builds recommendations
about SCF classification and metrics results. From
preloaded rules the system selects the best improvement
suggestion for each coding misuse.

2A violation to the Java Language Specification [12]

Fig. 2 – IJA web user interface

3. DATA CLASSIFICATION

Software Metrics: A software metric is defined as a
measure of some property of a piece of software or its
specifications. It represents a numeric value for a
particular source code feature. Generally is more useful
then multiple metrics are surveying software
characteristics, they aims the programmer for a more
precise opinion.

The present project analyzes source code attributes
since traditional metrics [15] (ie: Lines of Code or
Comment Percentage) and new ones specifically
designed for this prototype. The metrics displayed in
Table 1 are part of the project contribution:

TABLE 1
NEW SOFTWARE METRICS

Data Mining3: In order to find out the best cluster
number for the MLP, the Expectation Maximization
(EM) algorithm was applied [16]. Parameters were
established so as to detect clusters automatically by using
cross validation. Results with log likelihood (-1.79183)
are shown in Table 2.

TABLE 2
EM CLUSTERS

The EM algorithm stops when there is not a
significant quality increase. The quality is measured with:

 1 2 3 4 5r .P a r .P(b) r .P(c) r .P(d) r .P(e)    (1)

Being a, b, c, d and e clusters and r1, r2, r3, r4 and r5 the
parameters, the algorithm uses the probability register of
true parameters. Log likelihood stands for the willingness
or credibility measure of these probabilities. It is obtained
as the product of the conditional probabilities upon every
instance i in the sample:

i i i i i
1 2 3 4 5

x x x x x
r .P r .P r .P r .P r .P

a b c d e
                     
         

(2)

As another test, EM algorithm was reconfigured with
the following parameters:
Maximum interactions: 100
Deviation from minimum standard: 1.0 x 10-6

Number of clusters: 5
Seeds: 200
The final results are shown in Table 3 for log likelihood:
-9.06605.

TABLE 3
CLUSTERS

3Exploratory analysis to extract hidden information from large

datasets.

Neural Network Setup: A multilayer perceptron
neural network was selected to classify the SCF. It was
trained by a backpropagation algorithm and configured
with the following parameters:
Learning Rate: 0.3
Momentum: 0.2
Training Time: 500 epochs
Validation threshold: 20
Training Source: set training and cross validation

Neural Network Classification Accuracy: A general
average, over 90%, confirms the strong correlation
between SCF grouped in clusters by EM and the NN
capability of distinguishing differences between attributes
and of classifying them correctly [19].

Cluster Profiling: An automated algorithm to
evaluate the meaning of each cluster was implemented. It
depends on the instance SCF metric values. In this
process each metric value of the cluster is compared to
the total average (as a reference), and depending on a
distance factor, a level of proximity is determined. This
algorithm takes outputs from clustering and gets results
from the following procedure:
1. Inputs: the clusters characterized by the metrics:

V1...Vn (discrete values [-1,0,1])
The algorithm:
a. Acquire an average for every metric and value, and

select it as a reference (see Table 4).
b. Select the value Vx with minimum distance to

reference and categorize it comparing it with the same
Vx of the other clusters (using relative values) (see
Table 4)

c. Set up a position (ranking) for the cluster, depending
on the distance results (see Table 6).

2. Output clusters characterized by metrics. Using
discrete numbers and classifications according to the
proximity to reference (see Table 7).

Demonstration for V1 (lines of code / number of classes)

TABLE 4
REFERENCE AVERAGE VALUES

TABLE 5

DISTANCE TO REFERENCE
4

TABLE 6
POSITIONS DEPENDING ON DISTANCE RESULTS

Then, every numeric result with a high-grade position
(0 or 1) is converted into a qualitative label where the
profile that determines the identity of every cluster is
obtained, for example the Cluster 0 profile:

TABLE 7
CLUSTER 0 PROFILE

The next section describes recommendation phase

modules.

4. RULES ENGINE

An expert system or a system based on knowledge is a
computer system that makes decisions or solves problems
in a particular field by means of knowledge and analytical
rules defined by experts. It is made up of a knowledge
base —the rules of the EXSYS, that is to say, the codified
expert knowledge—, a working memory —stocks the
data received at the beginning in order to solve a
problem, then the intermediate conclusions and the final
results— and an inference engine, which models the
human reasoning process. The diagram in Fig. 3 basically
represents the structure of an expert system. Three

4In all cases the value series with the closer result to the reference are

selected.

examples of very well-known expert systems are CLIPS
[20], JESS [21] and DROOLS [22].

Fig. 3 Basic architecture of an expert system

Clips: In the mid-eighties, NASA5 required the
support of expert systems for developing projects.
Therefore, a number of prototypes emerge but their
results were not good enough to fulfill internal
requirements. Consequently, a prototype of an expert
system was developed; it was called CLIPS (C Language
Integrated Production System) whose main characteristic
was its interoperability with other existing systems.
Subsequent improvements and enlargements have turned
CLIPS into a point of reference for the development of
other expert systems. Even though CLIPS has shown
successfully its productive capacity, as regards expert
systems, and it is now in the public domain, its interface
with Java through JNI (Java Native Interface) is going
through a 0.2 beta experimental phase.

Jess: The rule engine JESS is a project that had its
origin in CLIPS but which was written entirely in Java. It
was developed during the nineties in Sandia National
Laboratories and it shares with CLIPS several design
concepts and similarities regarding syntax.

Drools: As in the case of CLIPS and JESS,
DROOLS is the implementation and extension of Rete
algorithm [17], designed by Dr. Charles L. Forgy at the
Carnegie Mellon University. Basically, its algorithm
consists in a network of interconnected nodes with
different characteristics —according to rules that define
them— that evaluate inputs by propagating results to the
next node when there are coincidences. DROOLS offers
integration tools with Java, capacity of scalability and a
clear division between data and logic domain. The IJA
project incorporates DROOLS Expert and defines rules in
MVEL scripting language.

Building the recommendations: Considering the
information obtained through metrics and indicators, IJA
uses an expert system which, according to the results of
previous processes, proposes recommendations for the
correction of deficiencies found. The solution is
generated by an expert system with pre-loaded rules in

5 National Aeronautics and Space Administration.

the knowledge base. Basically, each rule analyzes the
classification created by a neuronal network and then
makes a recommendation based on the cut values for each
metric [18] (see Table 8).

TABLE 8
RECOMMENDATIONS AS METRICS AND CLASSIFICATION

Knowledge Base: The knowledge base that is part of
the IJA expert system establishes a bijective function
between metrics and rules, that is to say, each metric that
was evaluated has a specific rule associated to it. Every
rule analyzes every classification result and metric value
according to the following algorithm:

a. For the cluster where the SCF was classified, is that
metric significant (ranking > 1)?

b. Does the value obtained agree with the one that was
expected?

YES: No recommendation is necessary
NO: Suggest a correction

The text for that suggestion is also different,
considering the distance with respect to the expected
value [23]. Significant deviations mean more relevant
recommendations.

5. CONCLUSION

This tool represents a new approach to automatically
evaluate and provide recommendations for programmers
in order to improve the source code quality, and
consequently, the software product itself.

In the process, a dataset created by data mining
algorithm is the reference classified data source to setup a
neural network. The trained multilayer perceptron have
demonstrated excellent precision for classifying this sort
of data. Hence, in addition of an unbiased cluster profiler,
the system is capable to predict software bugs just by
analyzing the Java source code.

The goal of the next stage of research is the intensive
testing and subsequent tuning of the prototype by means
of a statistical analysis that may validate the system or

help make the required adjustments. To do so, a web user
interface (see Fig. 2) is being developed. Therefore, this
feature will make community feedback available,
enabling future self-tuning capabilities.

In the same way, more research will be done, taking
into account the theory-practice framework that the
results of the present work represent, in order to define
new quality criteria for the evaluation of software.

6. REFERENCES

[1] AI Group: http://www.palermo.edu/ingenieria/it_lab.html
[2] Roe and Lytle, pp. 99, 1935.
[3] Moore, pp. 652, 1958.
[4] James D. Arthur, “Managing Software Quality: A Measurement

Framework for Assessments and Prediction”, Springer, 2002.
[5] ISO/IEC 9126: http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
[6] Roger S. Pressman, “Ingeniería del Software: Un Enfoque

Práctico”, Mc Graw Hill, 1998.
[7] Stephen H. Kan, “Metrics and Models in Software Quality

Engineering”, Addison-Wesley Professional, 2002.
[8] Capers Jones, “Applied software measurement: assuring

productivity and quality”, Mc Graw Hill, 1996.
[9] National Institute of Standards and Technology, “The Economic

Impacts of Inadequate Infrastructure for Software Testing”, RTI,
2002.

[10] W.A. Woods, “Transition Network Grammars for Natural
Language Analysis”, pp. 591-606, Communications of the ACM,
1970.

[11] Bruce Eckel, “Thinking in Patterns”, 2003.
[12] James Gosling, Bill Joy, Guy Steele, Gilad Bracha “The Java

Language Specification 3rd Edition ”, Pretience Hall, 2005.
[13] Daniela López De Luise, Martín Agüero, “Aplicación de Métricas

Categóricas en Sistemas con Lógica Difusa”, Revista IEEE
América Latina, 2007.

[14] Patrick H. Winston, “Inteligencia Artificial, tercera edición”,
Addison Wesley Iberoamericana, 1992.

[15] Linda H. Rosemberg “Applying and Iterpreting Object Oriented
Metrics”, Software Assurance Technology Center, NASA

[16] Ian H. Witten, Eibe Frank "Data Mining: Practical Machine
Learning Tools and Techniques", pp. 265, Morgan Kaufmann,
2005.

[17] Charles Forgy, “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”, Artificial
Intelligence, 19, pp 17-37, 1982.

[18] Madou F, Agüero M., Esperón G., López De Luise D., “Sistemas
Expertos en Evaluación de Calidad Java”, CONESCAPAN, 2009.

[19] Agüero M., Esperón G., Madou F, López De Luise D., “Intelligent
Java Analyzer”, IEEE CERMA, 2008.

[20] CLIPS http://clipsrules.sourceforge.net/
[21] JESS http://www.jessrules.com
[22] DROOLS http://www.jboss.org/drools/drools-expert.html
[23] Madou F, Agüero M., Esperón G., López De Luise D., “Evaluador

Inteligente de Código Java”, CICA, 2009.

