
ABSTRACT

This paper presents a software quality support  tool, a  
Java  source  code  evaluator  and  coder profiler based on  
computational  intelligence  techniques.  

It represents a new approach to automatically evaluate 
and improve source code quality and consequently the 
software product. To do so, it employs traditional and 
new source code metrics for modelling its content in 
context.  Also employs an Artificial Neural Network for
data classification and an Expert System on the 
recommendation build phase.

The objective is to provide the software development 
industry with a new software tool for software quality
improvement extending the source code metrics value 
through computational intelligence.

Keywords: Software metrics, artificial intelligence, 
neural networks, clustering algorithms, expert systems.

1. INTRODUCTION

n order to show that a computer program is mature and 
free of bugs, and that Software Requirements 

Specifications have been met (SRS), it will be necessary 
to have a strategy to support this process. The goal for 
any software project is to accomplish the above 
mentioned requirements, which means to get the best 

quality. Historically, the word “quality” has been adapted 
and has evolved together with the different technologies 
to which it has been applied. In the thirties, the 
metallurgical industry defined quality as a compliance to 
requirements; any deviation from such requirements 
meant loss of quality or limited trust in product quality. 
The consequence of this was lower costs and less rework 
[2]. In the fifties, quality costs increased exponentially. 
Therefore, specifications including tolerance (i.e., a 
deviation from perfection) were proposed. Inspections 
ensured that the product fell within a predefined 
tolerance. The goal of such inspections was to avoid 
corrections through the identification of product 
deviations from the original specification [3]. The 
creation of software does not imply serial production 
costs, but it is an intensive activity [4]. It requires the 
interaction and coordination of several specialists during 
all development stages. In the following subsections, 
different perspectives of software quality are presented.

Software Quality: It can be said that, as an 
adaptation and extension of classical definitions, the 
software industry focuses on the following principles: 1. 
Software requirements are the quality metric 
fundamental. Lack of compliance with requirements is a 
quality failure. 2. Standards establish development 
criteria. Absence of standards means, in many cases, low 
quality [5]. 3. Indirect measures (e.g. usability, 
maintainability, etc.) and direct measures (e.g. lines of 
code). Software Quality Assurance (SQA) are a way of 
encompassing the software engineering processes. It 

I

Enhancing Source Code Metrics Scope Through Artificial Intelligence

Martin AGÜERO
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Franco MADOU
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Gabriela ESPERON
AI Group, Universidad de Palermo

Buenos Aires, Argentina

Daniela LOPEZ DE LUISE
AI Group, Universidad de Palermo

Buenos Aires, Argentina



mainly consists of monitoring and developing 
information and administration tasks [6]. Inspection and 
metrics make software projects successful due to their 
excellent quality control results. Even though intensive 
software quality control increases costs, it is an activity 
with high Return On Investment (ROI). Empiric 
verification without data indicators and measures make 
theories and propositions remain abstract [7].

Economic impact of inadequate infrastructure for 
software testing [9]  Today the complexity of software is 
increasing at an alarming rate. Quality is defined as a 
bundle of attributes and the level of those attributes holds 
a positive value. Few companies are interested in 
advanced testing techniques as a way of forecasting field 
reliability based on test data and of calculating defect 
density to benchmark quality. Standardized automated 
testing scripts along with standard metrics would also 
provide a more consistent method to determine when to 
stop testing. Most developers prefer early bug detection, 
at the same developmental stage. Based on the software 
community and user surveys, the US annual costs of an 
inadequate infrastructure for software testing is estimated 
to range from $22.2 to $59.5 billion1. Over half of these 
costs are borne by software users in the form of error 
avoidance and mitigation activities. The remaining costs 
are borne by software developers and reflect the 
additional test resources that are consumed due to 
inadequate testing tools and methods.

Intelligent Java Analyzer (IJA):  This new software 
tool prototype employs traditional and new source code 
metrics to model its content in context.  Metrics results 
are discretized depending on deviations from the
programming language specification. Thresholds are set 
to obtain distances from the preferred code style. A
dataset built by Expectation Maximization (EM) data 
mining algorithm is the reference data source to train a 
neural network. A Multi Layer Perceptron (MLP) 
artificial neural network (NN) classifies the source code 
instances on clusters formerly established by the training 
set. In a programmed self-tuning process, the prototype 
can adjust each cluster profile, determining a dynamic 
distinctive identity for every classification output (NN). 
The classification phase groups source code instances that 
share common attributes of their syntaxes. In those cases 
where the attribute reveals a sign of erroneous language 
handling, a recommendation phase is activated. An expert 
system pre-loaded with rules analyzes the classification 
results and identifies every inaccurate source code usage. 
The rule engine also builds a set of recommendations 

                                                
1The impact estimates do not reflect the “costs” associated to mission 

critical software where any problem may lead to extremely high costs 
such as loss of life or catastrophic failure.

based on key features detected in the code.  The analysis 
process is completed with a report-style output advising 
the author on convenient procedures to improve the 
source code.

2. ARCHITECTURE

IJA prototype is divided into 9 modules: 6 for core 
functions and 3 for support services. Fig. 1 shows 
component relations, storage units and external 
interfaces. The analysis is executed in two main steps: 
classification and recommendation, both of which are 
coordinated by a Services Manager module.

Fig. 1 Intelligent Java Analyzer (IJA) architecture

It is a flexible and adaptable tool due to its design and 
XML configuration files. It could be used not only for 
scientific requirements but also to suit the needs of any 
firm. The whole tool is built on Enterprise Java 
technology platform; it runs on any JEE 1.5 servlet 
container.  Its design maximizes CPU load and reduces 
memory requirements, enabling the quick analysis of 
large datasets. The following sections describe each 
module design and their main features.

Content Sequencer Module: is an IJA extension of 
Java Collection API interface (Application Programming 
Interface).  It standardizes, encapsulates, and serializes 
source code files (SCF) content synchronically in order to 
process it in a transparent way. It can be configured to 
define specific word separator tokens.  

Syntax Analyzer (Parser): The first component of 
the classification phase is the Syntax Analyzer. It 
processes and extracts some context features. It also 
implements a parser algorithm that translates Java syntax 
into the model proposed by W. A. Woods: Augmented 



Transition Networks (ATN) [10].This applies State and 
Memento design patterns [11].  The algorithm detects 
some reserved words, symbols and structures and 
changes to a specific state.

The IJA modular design makes it possible to extend 
all its functionalities to other languages just by selecting a 
specific Syntax Analyzer module implementation for 
each programming language.

Software Metrics Analyzer: It is the calculus 
component and the analyst’s chosen algebra operations 
translator. According to the actual XML configuration, it 
generates software metrics by executing mathematical 
operations and using the results obtained from the 
previous module.  For example, a metric named v3 is the 
division between the quantity of methods and the quantity 
of methods with names starting with lowercase2. Besides 
some new metrics, the software also implements 
traditional metrics, e.g. v11 assesses the rate between the 
number of comments collected in a SCF and the number 
of Javadocs in it.   At this point, the analyst can set a 
weighting value to every system operator. The set of 
metrics defined is important to model SCF quality [13].

Results Evaluator / Normalizer: The Results 
Evaluator module normalizes the specific numeric values 
for each metric between -1 and 1. There are predefined 
thresholds —or quality class bounds— to help evaluate 
the result quality.   Each SCF is classified using the 
metric numeric results and the thresholds. Floating labels 
provide a code identification reference (ID) of the SCF 
accumulated in each sequence. Finally, the data is 
exported into an arff format so that the results (attribute-
relation file format) are compatible with the Intelligent 
Classifier Module.

Intelligent Classifier (Neural Network): This is the 
last step into the classification phase analysis process. It 
has a Multi Layer Perceptron (MLP). This Neural  
Network with backpropagation, was trained using the 
clusters derived automatically by an Expectation 
Maximization clustering algorithm (EM) [14].

Rules Engine: The last component is an Expert 
System (EXSYS) module. It builds recommendations 
about SCF classification and metrics results.  From 
preloaded rules the system selects the best improvement 
suggestion for each coding misuse. 

                                                
2A violation to the Java Language Specification [12]

Fig. 2 – IJA web user interface

3. DATA CLASSIFICATION

Software Metrics:  A software metric is defined as a 
measure of some property of a piece of software or its
specifications.  It represents a numeric value for a 
particular source code feature.  Generally is more useful 
then multiple metrics are surveying software
characteristics, they aims the programmer for a more
precise opinion.

The present project analyzes source code attributes 
since traditional metrics [15] (ie: Lines of Code or 
Comment Percentage) and new ones specifically
designed for this prototype.  The metrics displayed in
Table 1 are part of the project contribution:

TABLE 1
NEW SOFTWARE METRICS



Data Mining3: In order to find out the best cluster 
number for the MLP, the Expectation Maximization 
(EM) algorithm was applied [16]. Parameters were 
established so as to detect clusters automatically by using 
cross validation. Results with log likelihood (-1.79183) 
are shown in Table 2.

TABLE 2
EM CLUSTERS

The EM algorithm stops when there is not a 
significant quality increase. The quality is measured with:

 1 2 3 4 5r .P a r .P(b ) r .P( c ) r .P( d ) r .P( e )    (1)

Being a, b, c, d and e clusters and r1, r2, r3, r4 and r5 the 
parameters, the algorithm uses the probability register of 
true parameters. Log likelihood stands for the willingness 
or credibility measure of these probabilities. It is obtained 
as the product of the conditional probabilities upon every 
instance i in the sample:

i i i i i
1 2 3 4 5

x x x x x
r .P r .P r .P r .P r .P

a b c d e
                     
         

(2)

As another test, EM algorithm was reconfigured with 
the following parameters:
Maximum interactions: 100
Deviation from minimum standard: 1.0 x 10-6

Number of clusters: 5
Seeds: 200
The final results are shown in Table 3 for log likelihood:  
-9.06605.

TABLE 3
CLUSTERS

                                                
3Exploratory analysis to extract hidden information from large 

datasets.

Neural Network Setup: A multilayer perceptron 
neural network was selected to classify the SCF. It was 
trained by a backpropagation algorithm and configured 
with the following parameters:
Learning Rate: 0.3
Momentum: 0.2
Training Time: 500 epochs
Validation threshold: 20
Training Source: set training and cross validation

Neural Network Classification Accuracy: A general 
average, over 90%, confirms the strong correlation 
between SCF grouped in clusters by EM and the NN 
capability of distinguishing differences between attributes 
and of classifying them correctly [19].

Cluster Profiling: An automated algorithm to 
evaluate the meaning of each cluster was implemented. It 
depends on the instance SCF metric values. In this 
process each metric value of the cluster is compared to 
the total average (as a reference), and depending on a
distance factor, a level of proximity is determined. This 
algorithm takes outputs from clustering and gets results 
from the following procedure:
1. Inputs: the clusters characterized by the metrics: 

V1...Vn (discrete values [-1,0,1])
The algorithm:
a. Acquire an average for every metric and value, and 

select it as a reference (see Table 4).
b. Select the value Vx with minimum distance to 

reference and categorize it comparing it with the same 
Vx of the other clusters (using relative values) (see
Table 4)

c. Set up a position (ranking) for the cluster, depending 
on the distance results (see Table 6).

2. Output clusters characterized by metrics. Using 
discrete numbers and classifications according to the 
proximity to reference (see Table 7).

Demonstration for V1 (lines of code / number of classes)

TABLE 4
REFERENCE AVERAGE VALUES



TABLE 5

DISTANCE TO REFERENCE
4

TABLE 6
POSITIONS DEPENDING ON DISTANCE RESULTS

Then, every numeric result with a high-grade position 
(0 or 1) is converted into a qualitative label where the 
profile that determines the identity of every cluster is 
obtained, for example the Cluster 0 profile:

TABLE 7
CLUSTER 0 PROFILE

  
The next section describes recommendation phase 

modules.

4. RULES ENGINE

An expert system or a system based on knowledge is a 
computer system that makes decisions or solves problems 
in a particular field by means of knowledge and analytical 
rules defined by experts. It is made up of a knowledge 
base —the rules of the EXSYS, that is to say, the codified 
expert knowledge—, a working memory —stocks the 
data received at the beginning in order to solve a 
problem, then the intermediate conclusions and the final 
results— and an inference engine, which models the 
human reasoning process.  The diagram in Fig. 3 basically 
represents the structure of an expert system. Three 

                                                
4In all cases the value series with the closer result to the reference are 

selected.

examples of very well-known expert systems are CLIPS 
[20], JESS [21] and DROOLS [22].

Fig. 3 Basic architecture of an expert system

Clips:  In the mid-eighties, NASA5 required the 
support of expert systems for developing projects. 
Therefore, a number of prototypes emerge but their 
results were not good enough to fulfill internal 
requirements. Consequently, a prototype of an expert 
system was developed; it was called CLIPS (C Language 
Integrated Production System) whose main characteristic 
was its interoperability with other existing systems. 
Subsequent improvements and enlargements have turned 
CLIPS into a point of reference for the development of 
other expert systems.  Even though CLIPS has shown 
successfully its productive capacity, as regards expert 
systems, and it is now in the public domain, its interface 
with Java through JNI (Java Native Interface) is going 
through a 0.2 beta experimental phase.

Jess:  The rule engine JESS is a project that had its 
origin in CLIPS but which was written entirely in Java. It 
was developed during the nineties in Sandia National 
Laboratories and it shares with CLIPS several design 
concepts and similarities regarding syntax.

Drools:  As in the case of CLIPS and JESS, 
DROOLS is the implementation and extension of Rete 
algorithm [17], designed by Dr. Charles L. Forgy at the 
Carnegie Mellon University.  Basically, its algorithm 
consists in a network of interconnected nodes with 
different characteristics —according to rules that define 
them— that evaluate inputs by propagating results to the 
next node when there are coincidences.  DROOLS offers 
integration tools with Java, capacity of scalability and a 
clear division between data and logic domain.  The IJA 
project incorporates DROOLS Expert and defines rules in 
MVEL scripting language.

Building the recommendations: Considering the 
information obtained through metrics and indicators, IJA 
uses an expert system which, according to the results of 
previous processes, proposes recommendations for the 
correction of deficiencies found. The solution is 
generated by an expert system with pre-loaded rules in 
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the knowledge base. Basically, each rule analyzes the 
classification created by a neuronal network and then 
makes a recommendation based on the cut values for each 
metric [18] (see Table 8).

TABLE 8
RECOMMENDATIONS AS METRICS AND CLASSIFICATION

Knowledge Base: The knowledge base that is part of 
the IJA expert system establishes a bijective function 
between metrics and rules, that is to say, each metric that 
was evaluated has a specific rule associated to it. Every 
rule analyzes every classification result and metric value 
according to the following algorithm:

a. For the cluster where the SCF was classified, is that 
metric significant (ranking > 1)?

b. Does the value obtained agree with the one that was 
expected?

YES: No recommendation is necessary
NO: Suggest a correction

The text for that suggestion is also different, 
considering the distance with respect to the expected 
value [23]. Significant deviations mean more relevant 
recommendations.

5. CONCLUSION

This tool represents a new approach to automatically 
evaluate and provide recommendations for programmers 
in order to improve the source code quality, and 
consequently, the software product itself.

In the process, a dataset created by data mining 
algorithm is the reference classified data source to setup a 
neural network. The trained multilayer perceptron have 
demonstrated excellent precision for classifying this sort 
of data. Hence, in addition of an unbiased cluster profiler, 
the system is capable to predict software bugs just by 
analyzing the Java source code.

The goal of the next stage of research is the intensive 
testing and subsequent tuning of the prototype by means 
of a statistical analysis that may validate the system or 

help make the required adjustments.  To do so, a web user 
interface (see Fig. 2) is being developed. Therefore, this 
feature will make community feedback available, 
enabling future self-tuning capabilities.

In the same way, more research will be done, taking 
into account the theory-practice framework that the 
results of the present work represent, in order to define 
new quality criteria for the evaluation of software.

6. REFERENCES

[1] AI Group: http://www.palermo.edu/ingenieria/it_lab.html
[2] Roe and Lytle, pp. 99, 1935.
[3] Moore, pp. 652, 1958.
[4] James D. Arthur, “Managing Software Quality: A Measurement 

Framework for Assessments and Prediction”, Springer, 2002.
[5] ISO/IEC 9126: http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
[6] Roger S. Pressman, “Ingeniería del Software: Un Enfoque 

Práctico”, Mc Graw Hill, 1998.
[7] Stephen H. Kan, “Metrics and Models in Software Quality 

Engineering”, Addison-Wesley Professional, 2002.
[8] Capers Jones, “Applied software measurement: assuring 

productivity and quality”, Mc Graw Hill, 1996.
[9] National Institute of Standards and Technology, “The Economic 

Impacts of Inadequate Infrastructure for Software Testing”, RTI, 
2002.

[10] W.A. Woods, “Transition Network Grammars for Natural 
Language Analysis”, pp. 591-606, Communications of the ACM, 
1970.

[11] Bruce Eckel, “Thinking in Patterns”, 2003.
[12] James Gosling, Bill Joy, Guy Steele, Gilad Bracha “The Java 

Language Specification 3rd Edition ”, Pretience Hall, 2005.
[13] Daniela López De Luise, Martín Agüero, “Aplicación de Métricas 

Categóricas en Sistemas con Lógica Difusa”, Revista IEEE 
América Latina, 2007.

[14] Patrick H. Winston, “Inteligencia Artificial, tercera edición”, 
Addison Wesley Iberoamericana, 1992.

[15] Linda H. Rosemberg “Applying and Iterpreting Object Oriented 
Metrics”, Software Assurance Technology Center, NASA

[16] Ian H. Witten, Eibe Frank "Data Mining: Practical Machine 
Learning Tools and Techniques",  pp. 265, Morgan Kaufmann, 
2005.

[17] Charles Forgy, “Rete: A Fast Algorithm for the Many 
Pattern/Many Object Pattern Match Problem”, Artificial 
Intelligence, 19, pp 17-37, 1982.

[18] Madou F, Agüero M., Esperón G., López De Luise D., “Sistemas 
Expertos en Evaluación de Calidad Java”, CONESCAPAN, 2009.

[19] Agüero M., Esperón G., Madou F, López De Luise D., “Intelligent 
Java Analyzer”, IEEE CERMA, 2008.

[20] CLIPS http://clipsrules.sourceforge.net/
[21] JESS http://www.jessrules.com
[22] DROOLS http://www.jboss.org/drools/drools-expert.html
[23] Madou F, Agüero M., Esperón G., López De Luise D., “Evaluador 

Inteligente de Código Java”, CICA, 2009.


