
 

ABSTRACT 

The training of technicians in maintenance requires the use of 
signals produced by faulty machines in different operating 
conditions, which are difficult to obtain either from the 
industry or through destructive testing. Some tasks in 
electricity and control courses can also be complemented by an 
interactive induction machine model having a wider internal 
parameter configuration. This paper presents a new analytical 
model of induction machine under fault, which is able to 
simulate induction machines with rotor asymmetries and 
eccentricity in different load conditions, both stationary and 
transient states and yielding magnitudes such as currents, speed 
and torque. This model is faster computationally than the 
traditional method of simulating induction machine faults 
based on the Finite Element Method and also than other 
analytical models due to the rapid calculation of the 
inductances. The model is presented in Simulink by Matlab for 
the comprehension and interactivity with the students or 
lecturers and also to allow the easy combination of the effect of 
the fault with external influences, studying their consequences 
on a determined load or control system. An associated 
diagnosis tool is also presented. 
 
Keywords: Simulation, training, induction motor, 
Matlab/Simulink, interactive tools, maintenance, e- training. 

1. INTRODUCTION 
This paper presents an induction machine model developed in 
Simulink environment able to simulate the currents, speed and 
torque of a faulty induction motor for its application in 
education and training of maintenance techniques in predictive 
maintenance and fault diagnosis, and its associated analysis 
tool. On the contrary to the basic model included in the 
Simulink tool, the proposed model provides a wider machine 
internal parameters configuration which allows the simulation 
of the current feeding an induction machine suffering a rotor 
asymmetry and/or eccentricity, as well as its effect in torque 
and speed, both in stationary and transient state. In addition, its 
implementation in Simulink permits the easy combination of 
the effect of the fault with external influences, or conversely, 
studying its effect on a determined load or control system. 
 
Maintenance of induction motors is an issue of special concern 
in the industrial environment. Eccentricity under its various 

kinds is a common fault, and broken rotor bars and, more 
generally, rotor asymmetries, amount for around 10% of the 
failures in such equipment [1]. Although this fault does not 
cause an immediate collapse of the machine, its importance 
cannot be understated, since it propagates progressively 
towards the adjacent bars, leading to an irreversible failure. 
Moreover, large motors –being difficult to replace and 
involving the highest repair costs– started under high inertias 
are especially prone to suffer this type of fault, thus the need 
for having well trained maintenance personnel able to diagnose 
it in advance. 
 
In the industrial environment, the most widely spread 
technique for the detection of rotor bar breakages and 
eccentricities is known as Motor Current Signature Analysis 
[2]-[4] and involves the identification of specific fault 
components in the spectrum of machine stator current 
waveform during stationary operation. This has some 
drawbacks, such as the difficulty of being applied to machines 
under unloaded condition or under unbalanced supply voltages, 
varying load or load torque oscillations [5]-[7]. Thus, recent 
methods have been developed to overcome these drawbacks, 
such as the demodulation using the Hilbert transform [8] or the 
study the transient processes of the machine and specifically, 
the startup transient. Due to the time-varying frequency 
spectrum of the startup current signal during the transient, 
modern time-frequency decomposition tools have been applied, 
such as wavelet transforms [9]-[12], Hilbert-Huang transform 
[13] and other Time Frequency Distributions (TFD), such as 
Wigner-Ville [14]-[16]. 
 
Furthermore, previous works have stated the Simulink 
induction motor model suitability for being successfully 
applied to undergraduate electric machinery courses, in order 
to introduce induction motor tests and to evaluate its steady 
state characteristics [17]. Nevertheless, others have indicated 
its shortages when it has been tried in more advanced tasks, 
which arise as the field of application of induction machines 
widens, such as machines with an arbitrary number of phases 
[18]. 
 
In addition, some authors have identified key features that 
tailored Simulink models should accomplish in order to be 
successfully applied in education and training of electrical 
equipment, such as simplicity [18] and interactivity [19], 
features that cannot be obtained from Finite Element Methods, 
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3. HARMONICS SHOWING FAULTS 
The most used method for diagnosing rotor asymmetries is the 
current signature analysis (MCSA); this approach is based in 
the detection of harmonics with characteristic frequencies into 
the spectrum of the stator current in steady state regime. 
 
The two main frequency components often traced for the 
diagnosis of rotor asymmetries appear during stationary 
operation as sidebands of the main current harmonic and are 
known as lower sideband harmonic (LSH) and upper sideband 
harmonic (USH). Their frequencies fsb can be calculated using 
(10) (s=slip and f=supply frequency) [2]. 
 
                        ( ) fsfsb ⋅⋅±= 21                                  (10) 
 
The frequencies of these components are a particular case of 
the general expressions of the components amplified by the 
fault, given by (11) and (12) [25-26].  
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Furthermore, expressions for the calculation of the 
characteristic frequencies of the components introduced by 
static or dynamic eccentricities have been proposed by several 
authors [27]. Usually both kinds of eccentricity coexist, 
yielding low frequency components that appear near the 
fundamental [28]. Those frequencies can be computed by (13), 
where fr is the frequency of rotation of the rotor. 
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The characteristic fault-related frequencies given by these 
expressions are constant during stationary operation. However, 
during the start up transient they evolve in a particular way, as 
the slip s varies from a value equal to 1, when the machine is 
connected, to a value near to 0 (steady-state). This evolution 
creates characteristic pattern whose detection is the base of new 
diagnosis methods recently developed; These methods use 
time-frequency signal analysis techniques for revealing the 
characteristic patterns produced by the fault components under 
transient conditions [10]-[16]. 
 
Since the electrical and mechanical magnitudes computed by 
the proposed model contains all the fault components, it can be 
used either for training purpose with conventional permanent 
based diagnostic techniques as well as for teaching and training 
with the new transient based diagnostic approaches. 
 
Table 1 characterizes the evolution of the main frequency 
components amplified by the rotor asymmetry for a one pole 
pair motor from the connection instant (s=1) to the steady 
state, assuming ideal unloaded condition (s=0), according to 
(11). Using the “+” sign; these components have positive initial 
frequencies at startup. In these cases, their frequencies increase 
from the fundamental frequency value up to their final steady-
state value (direct evolution). 
 
 
 

TABLE 1 
HIGH FREQUENCY COMPONENTS AMPLIFIED BY THE ASYMMETRY 

ACCORDING TO (11) (DIRECT EVOLUTION). 
 

k/p ⎟⎟
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⎛
+−⋅⋅ ss

p
kf )1(

 ( )Hzsfb 1=  ( )Hzsfb 0=  

LSH+S 150 3 f·(3-2·s) 50 150 
LSH+S 250 5 f·(5-4·s) 50 250 
LSH+S 350 7 f·(7-6·s) 50 350 
 
Table 2 presents the lower sideband harmonics whose absolute 
frequency value decreases at first, falling progressively to zero 
and increases again until reaching its steady state frequency. 
 

TABLE 2 
HIGH FREQUENCY COMPONENTS AMPLIFIED BY THE ASYMMETRY 

ACCORDING TO (11) (INDIRECT EVOLUTION). 
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Table 3 shows the evolution during startup of the main 
components introduced by a mixed eccentricity fault for a two 
pole pair machine, according to (13): 
 

TABLE 3 
MAIN ECCENTRICITY COMPONENTS ACCORDING TO (13) IN HZ 

Component m 
Initial frequency 

value (connection, 
s=1) 

Final frequency 
value (steady-state, 

s=0) 
EC 25 -1 50 25 
EC 75 1 50 75 

EC 100 2 50 100 
 

4. CLASSROOM EXAMPLES 
This section shows the ability of the developed model for 
including in the computated signals the fault components 
theorically predicted, and therefore, enabling for the 
experimentation of different diagnostic approaches. 
 

 
 
Fig. 2.  Simulation of a 1.1 kW, four pole Siemens motor 
having two broken bars, during a start-up and stationary 
operation. From top to bottom and left to right: current in one 
phase, speed and output torque. 
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Eccentricity 
Eccentricity is handled by the model computing a matrix of 
inductances prior to the simulation, which takes into account 
the variations of permeance that the non-uniform air gap 
causes. 
 
In a healthy machine, the inductances depend only on the 
relative position between conductors, yielding a vector that is 
processed accordingly. For static eccentricity the value of the 
inductances also change relative to the position of center of the 
rotor, being distributed their values in a matrix. Finally, for 
mixed eccentricity, a 3D matrix is needed to also handle their 
variation with respect to the position of the rotor. 
 

 
 
Fig. 7. Wigner-Ville distribution from the real startup current 
of a 1.1 kW four pole Siemens motor having a broken bar, 
coupled to a speed-dependant load. 
 
The matrix is calculated once prior to the simulation of the 
machine in each state, stored and its values selected as they are 
needed to solve equations (3), (4) and (8). This allows 
performing several simulations on a specific machine and state 
under different power supply and load conditions with no need 
of recalculating it, which shortens the computation time, a 
critical aspect considering its application in education and 
training. 
 

 
Fig. 8. FFT spectrum of the current from a simulated 1.1 kW 
Siemens induction motor suffering 20% static and 50% 
dynamic eccentricity 
 
 

Fig. 8 shows the results of applying the proposed model to 
simulate a mixed eccentricity in a four pole motor during 
stationary operation. All low frequency components presented 
in Table 3 can be detected: EC 25 (c1), EC 75 (c2) and EC 100 
(c3). 

5. CONCLUSIONS 
This paper presents a new induction motor model able to 
simulate an induction machine having a rotor asymmetry or 
eccentricities faults, both in stationary and transient operation 
and under variable load conditions. Due to a method of discrete 
circular convolution carried out through the FFT, the 
computation is fast enough (1 minute per second simulated at 5 
kS/s) to assure the suitable interactivity for its application in 
education, training and e-training. 
 
The model has been programmed in Simulink in order to be 
used with different loads and control systems. An analysis tool 
coupled to its output facilitates the presentation of several new 
techniques of diagnosis in maintenance training courses. 
 
The presented model has been introduced in the lecturing of 
electronic engineers with encouraging results. 
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