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Reflexivity refers to a relationship between an entity and 
itself.









Reflexivity refers to mutuality of 
relationship as well.





A logician saves the life of a tiny space alien. The alien
is very grateful and, since she's omniscient, offers the

following reward: she offers to answer any question the
logician might pose. Without too much thought (after all,
he's a logician), he asks: "What is the best question to ask
and what is the correct answer to that question?" The tiny
alien pauses. Finally she replies, "The best question is the
one you just asked; and the correct answer is the one I

gave." 

Simplicity



Gebstadter, Egbert B. Copper, Silver, Gold: an
Indestructible Metallic Alloy. Perth: Acidic Books, 1979.
(Two-hundred-fortieth-luniversary edition, Perth: Acidic

Books, 1999.)

A formidable hodge-podge, turgid and
confused — yet remarkably similar to Douglas Hofstadter’s

first work, and appearing in its well-annotated
bibliography. Professor Gebstadter’s Shandean digressions
include some excellent examples of indirect self-reference.

Of particular interest is a reference in its own
well-annotated bibliography to an isomorphic, but imaginary,

book.

Indirect Self-Reference













One can be aware of
one’s own 
thoughts.



An organism produces 
itself

through its
own productions.



A market is composed of
individuals

whose actions
influence the market

just as the 
actions of the

market influence
these 

individuals. 



The participant is
an observer

but 
not
an

objective observer.



There is no objective observer.



There is no objective observer, and yet
objects, repeatablity,

a whole world of actions,
and a reality to be explored

 arise
in the relexive domain.



The object is both an element of a world
and

a symbol for the process of its
production/observation.

An object, in itself, is a symbolic
entity,

participating in a network of interactions,
taking on its apparent solidity and stabilty

from these interactions.
 



We ourselves are such objects,
we as human beings are 

“signs for ourselves”
a concept 

originally due to the
American philosopher

C.S. Peirce.

 



of transformations, are present for all transformations of the 
reflexive domain. This will encourage us and it will give us pause. 
The existence of eigenforms will encourage us, for we have 
previously studied them with the notion that "objects are tokens 
for eigenbehaviour".  Eigenforms are the natural emergence of those 
tokens by way of recursion. So to find the eigenforms dictated by a 
larger concept is pleasing. But we shall also need to pause. 
For the existence of fixed points for arbitrary transformations will  
show us that the domain we have postulated is indeed very wide. 
It is not an objectively existing domain. It is a clearing in which 
structures can arise and new structures can arise. A reflexive 
domain is not an already-existing structure. Not at all. To be what it 
claims to be, a reflexive domain must be a combination of existing 
structure and an invitation to create new structure and new 
concepts. The new will become platforms from which further flights 
of creativity can be made. Thus in the course of examining the 
concept of reflexivity we will find that the essence of the matter is  
an opening into creativity, and that will become the actual theme of 
this paper. 
 
This essay begins with a discussion of the notion of eigenform as 
pioneered by Heinz von Foerster in his papers [4, 5,6,7] and 
explored in papers of the author [11, 12].  We include some of the 
material from [11] in this paper for the sake of completeness. In [5] 
the familiar objects of our existence can be seen to be nothing more 
than tokens for the behaviors of the organism, creating apparently 
stable forms.    
 
In this view, the object is both an element of a world and  a token or 
symbol for the process of its production/observation.    
 
 An object , in itself , is a symbolic entity, participating in a network 
of interactions, taking on its apparent solidity and stability from 
these interactions. We ourselves are such objects, we as human 
beings are "signs for ourselves",  a concept originally due to the 
American philosopher C. S. Peirce [10]. Eigenforms are mathematical 
companions to Peirce's work.   
  
In an observing system, what is observed is not distinct from the 
system itself, nor can one make a complete separation between the 
observer and the observed. The observer and the observed  stand 
together in a coalescence of perception. From the stance of the 
observing system all objects are non-local, depending upon the 
presence of the system as a whole. It is within that paradigm that 
these models begin to live, act and enter into conversation with us.   
 
After this journey into objects and eigenforms, we take a wider 
stance and consider the structure of spaces and domains that 
partake of the reflexivity of object and process. In Section VI we 
make a definition of a reflexive domain . Our definition populates a 
space (domain) with entities that could be construed as objects, and 
we assume that each object acts as a transformation on the space. 
Essentially this means that given entities A and B, then there is a 
new entity C that is the result of A and B acting together in the 
order AB (so that one can say that "A acts on B" for AB and one can 
say "B acts on A" for BA). This means that the reflexive space is 
endowed with a non-commutative  and non-associative algebraic 
structure. The reflexive space is expandable in the sense that 
whenever we define a process, using entities that have already been 
constructed or defined, then that process can take a name, 
becoming a new entity/transformation of a space that is expanded 
to include itself.. Reflexive spaces are open to evolution in time, as 
new processes are invented and new forms emerge from their 
interaction.  
 
Remarkably, reflexive spaces always have eigenforms for every 
element/transformation/entity in the space! The proof is simple but 
requires discussion.  
 

Given F in a reflexive domain, define G by Gx = F(xx). 
Then GG = F(GG) and so GG is an eigenform for F.  

 
Just as promised, in a reflexive domain, every entity has an 
eigenform. From this standpoint, one should start with the concept 
of reflexivity and see that from it emerge eigenforms.  Are we 
satisfied with this approach? We are not satisfied. For in order to 
start with reflexivity, we need to posit objects and processes. As we 
have already argued in this essay, objects are tokens for 
eigenbehaviours. And a correct or natural beginning is process 
where objects are seen as tokens of processes.   
 
By now the reader begins to see that the story we have to tell is a 
circular one. We give a way to understand this circularity with our 
last section, where we discuss creativity in recursive process and the 
emergence of novelty. 
 



The ground of discussion is 
not fixed beforehand.

The space grows in the hands of those 
who explore it.

Infinity beckons as an indicator
of process.





Referential and Recursive Domains

We would like to define the concept of a 
reflexive domain.

The very act of making definitions is
itself reflexive.

So any definition that we make will not
be all that is possible, and it may even

miss the key point!



Nevertheless, we shall try,
keeping in mind that 
any formalization is

really an example and not the whole.

There is freedom in this attititude.
You do not have to produce the

Theory of Everything
if

Everything is 
Reflected in each

Theory.



Reflexive Domain

A reflexive domain D is a space where
 every object is a transformation,

and every transformation
corresponds uniquely to an object.



D                      [D,D]

In a reflexive domain
Actions and

Objects
are 

Identical.



Let D be a reflexive domain.

Theorem.  
Every transformation T of a reflexive domain

has a fixed point.

Eigenforms Exist in Reflexive Domains

Define a new transformation G by 
Gx = T(xx).

Proof.

Then GG = T(GG).
QED.



Gx = T(xx) GG = T(GG)



AAA =

=

=

The Duplicating Gremlin Creates
The Re-entering Mark.

phase-shifted from the original one by one half-period. The
juxtaposition of the these two waveforms yields a marked state.

...

...
=
=

=

...
...

With this interpretation we would like to keep position  as a rule
about the reentering mark. But we also note, that as a waveform
the reentering mark, taken all by itself, is indistinguishable from its
crossed form.

......=

= (all by itself)
One way to get partially out of this dilemma is to make two
imaginary values i and j, one for each waveform and to have the
following waveform arithmetic:

...

...
=
=

=

...
...i

j

ij

j   = ji   = i

i j= =, ,

,
The waveform arithmetic satisfies occultation and transposition, but
not position. It is similar to the three-values Calculus for Self-
Reference, and has a completeness theorem using these values. This
rich structure is directly related to a class of multiple valued logics

Fibonacci Form and Beyond 13

to satisfy this equation. It is akin to solving,

by attempting to create a space where “I” can be both myself and inside myself, as is true
of our psychological locus. And this can be solved by an infinite regress of Me’s inside of
Me’s.

In a similar manner, we may solve the equation for J by an infinite nest of boxes

Note that in this form of the solution, layered like an onion, the entire infinite form reenters
its own indicational space. It is indeed a solution to the equation

The solution in the form

is meant to indicate how the form reenters its own indicational space. This reentry notation
is due to G. Spencer-Brown. Although he did not write down the reentering mark itself in
his book Laws of Form, it is implicit in the discussion in chapter 11 of that book.

It is not obvious that we should take infinite regress as a model for the way we are in
the world. Everyone has experienced being between two reflecting mirrors and the
veritable infinite regress that arises at once in that situation. Physical processes can happen
more rapidly than the speed of our discursive thought, and thereby provide ground for an
excursion to infinity.
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phase-shifted from the original one by one half-period. The
juxtaposition of the these two waveforms yields a marked state.
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=
=
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...
...

With this interpretation we would like to keep position  as a rule
about the reentering mark. But we also note, that as a waveform
the reentering mark, taken all by itself, is indistinguishable from its
crossed form.

......=

= (all by itself)
One way to get partially out of this dilemma is to make two
imaginary values i and j, one for each waveform and to have the
following waveform arithmetic:

...

...
=
=

=

...
...i

j

ij

j   = ji   = i

i j= =, ,

,
The waveform arithmetic satisfies occultation and transposition, but
not position. It is similar to the three-values Calculus for Self-
Reference, and has a completeness theorem using these values. This
rich structure is directly related to a class of multiple valued logics

A Form Re-enters its Own
Indicational Space.



Fibonacci Form and Beyond 17

It is generally thought that the miracle of being able to recognize an object arises in
some simple way from the assumed existence of the object and the action of our perceiving
systems. What must be understood is that this act of cognition is a fine tuning to the point
at which the action of the perceiver, and the perception of the object are indistinguishable.
Such tuning requires an intermixing of the perceiver and the perceived that goes beyond
description. Yet in terms of mathematical entities such as number or fractal pattern, part of
the process is slowed down to the point where we can begin to apprehend it. There is a
stability in the comparison, in the one-to-one correspondence that is a process happening
at once in the present time. The closed loop of perception occurs in the eternity of present
individual time. Each such process depends upon linked and ongoing eigenbehaviors and
yet is seen as simple by the perceiving mind.

6.  Fibonacci Particles

Think of the Spencer-Brown mark as an “elementary particle” that has two modes of
interaction. Two marks can interact to produce either one mark or nothing.

 

Fractal
Re-entering

Mark



domain of real numbers usually assumed in working with numerical recursions. This
last example is worth comparing with the infinite nest of boxes. If we ask for a fixed
point for FðxÞ ¼ 2þ 1=x we are asking for an x such that x ¼ 2þ 1=x: Hence we
ask for x such that x *x ¼ 2xþ 1; a solution to a quadratic equation. And one
verifies that ð1þ Sqrtð2ÞÞð1þ Sqrtð2ÞÞ ¼ 2ð1þ Sqrtð2ÞÞ þ 1: Hence x ¼ 1þ
Sqrtð2Þ is an example of a fixed point for F(x).

On the other hand, following the proof of the theorem, we find that

J ¼ FðFðFð. . .ÞÞÞ ¼ 2þ 1=ð2þ 1=ð2þ 1=ð2þ %%%ÞÞÞ;
an infinite continued fraction that formally satisfies the equation J ¼ FðJÞ: In this case,
we can make numerical sense of the infinite construction. In general, we are challenged
to find a context in which the infinite concatenation of the operator makes sense.

The place where this sort of construction reaches a conceptual boundary is
met in dealing with all solutions to a quadratic equation. There we can begin
with the equation x *x ¼ axþ b with roots x ¼ ðaþ Sqrtða * aþ 4bÞÞ=2 and
x ¼ ða2 Sqrtða * aþ 4bÞÞ=2: If ða * aþ 4bÞ , 0 then the roots are imaginary.
On the other hand, we can rewrite the quadratic (dividing by x for x not zero) as
x ¼ aþ b=x ¼ fðxÞ:

Associating to this form of the quadratic the eigenform

E ¼ fðfðfðfð. . .ÞÞÞÞ;
we have

E ¼ aþ 1=ðbþ 1=ðaþ 1=ðbþ %%%ÞÞÞ with fðEÞ ¼ E:

Thus, E is a formal solution to the quadratic equation, and the consecutive terms

E1 ¼ a; E2 ¼ aþ 1=b; E3 ¼ aþ 1=ðbþ 1=aÞ; . . .
will converge to one of the roots when the roots are real, but will oscillate with no
convergence when the roots are imaginary. Nevertheless, this series and its associated
eigenform are very closely related to the complex solutions, and the eigenform provides
a conceptual center for the investigation of these relationships (Kauffman 1987, 1994).

We end this section with one more example. This is the eigenform of the Koch
fractal (Kauffman, 1987). In this case, one can symbolically write the eigenform
equation

K ¼ K{K K}K

to indicate that the Koch Fractal re-enters its own indicational space four times (i.e. it is
made up of four copies of itself, each one-third the size of the original). The curly
brackets in the center of this equation refer to the fact that the two middle copies within
the fractal are inclined with respect to one another and with respect to the two outer
copies. Figure 3 shows the geometric configuration of the re-entry.

In the geometric recursion, each line segment at a given stage is replaced by four
line segments of one-third its length, arranged according to the pattern of re-entry as
shown in Figure 3. The recursion corresponding to the Koch eigenform is shown in
Figure 4. Here we see the sequence of approximations leading to the infinite
self-reflecting eigenform that is known as the Koch snowflake fractal.

K 71377—21/12/2004—RAVICHANDRAN—127841
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Five stages of recursion are shown. To the eye, the last stage vividly illustrates how the
ideal fractal form contains four copies of itself, each one-third the size of the whole. The
abstract schema

K ¼ K{K K}K

for this fractal itself can be iterated to produce a “skeleton” of the geometric recursion:

Figure 3.
Geometric configuration of
the re-entry

Figure 4.
Recursion corresponding
to the Koch eigenform
which leads to the infinite
self-reflecting eigenform
(Koch snowflake fractal)
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The Framing of
Imaginary Space.



Describing Describing



Consider the consequences of 
describing
and then

describing that description.

We begin with one entity:

*

And the language of  the numbers:
1,2,3.

Describing Describing

Yes, just ONE,TWO,THREE.



*

Description: “One star.”

1*

Description: “One one, one star.”

311*

Description: “Three ones, one star.”

111*

Description: “One three, two ones, one star.”

13211*



*
1*
111*
311*

13211*
111312211*

311311222111*
1321132132311*

11131221131211131213211*

Describing Describing



6.1 Audio-activity and the social context
I kept thinking about that question, and wondering about finding a good mathematical
example. Then I remembered learning about the “audio-active sequence” of numbers
from Conway (1985). This is a number sequence that begins as:

1; 11; 21; 1211; 111221; 312211; 13112221; 1113213211; . . .

Can you find the next number in the sequence? If you read them out loud, the
generating idea becomes apparent

one; one one; two ones; one two; one one; . . .

Each term in the sequence is a description of the digits in the previous member of the
sequence. The recursion goes back and forth between number and description of
number. What happens as this recursion goes on and on?

Here is a bit more of it:

1
11
21
1211
111221
312211
13112221
1113213211
31131211131221
13211311123113112211
11131221133112132113212221
31132221232112111312211312113211
13211332111213122112311311222113111221131221

Now you can begin to see that there is a approach to a triple of infinite sequences, each
describing the next, with the first describing the last. This triple is the limiting
condition of the audio-active sequence. In one sense the audio-active sequence oscillates
among these three sequences (in the limit), and yet in another sense this triplet of
infinite sequences is the eigenform in back of the audio-activity!

A ¼ 11131221131211132221. . .

B ¼ 3113112221131112311332. . .

C ¼ 132113213221133112132123. . .

The triple of infinite sequences are built by continually cycling the self-description
through the three sequences. This leads to a definite and highly unpredictable buildup
of the three infinite sequences,A, B, and C such that B describesA, C describes B and
A describes C! (Figure 5).

This triplication is the eigenform for the recursion of the audio-active sequence. The
triplicate mutual description is the “fixed point” of this recursion. With this example,
we begin to see the subtlety of the concept of an eigenform, and how it may apply to
diverse human situations. For indeed imagine the plight of three individual human
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beings Alice, Bob and Carol who each take on the task to describe another, with Bob
describing Alice, Carol describing Bob and Alice describing Carol. In the mutual round
of their descriptions they may converge on a mutual agreement as do the triplet of
audio-active sequences (in the limit). Yet, it may take some coaxing to bring forth the
agreement and some creativity as well. More complex social situations will be beyond
calculation, and yet, the principles of the interaction, the possibility of eigenforms will
apply. The concept is powerful and important to consider, particularly when one is
faced with the incalculable nature of complex interaction.

7. Generation of objects
The true question about an object is: How is it generated?

The false question about an object is: What is its classification?
Take a mathematical case in point. Let R be the set of all sets that are not members

of themselves. (Russell’s famous paradoxical set.) We symbolize R as follows.
Let AB denote the condition that B is a member of A.
Define R by the equation

RX ¼,XX

which says X is a member of R means that it is not the case that X is a member of X.
From this we reach the paradox at once. Substitute R for X you obtain:

RR ¼,RR

R is a member of R means that it is not the case that R is a member of R.
Something curious has happened. We attempt to classify R by finding if it was or

was not a member of itself and we are led into a round robin that oscillates between
membership and nonmembership. Classification creates trouble.

Ask how R is generated.
We start with some sets we know. For example, the empty set is not a member of

itself, neither is the set of all cats. So a first approximation to R could be

R1 ¼ { { }; Cats};

where Cats denote the set of all cats (Cats is not a cat.). Now we note that R1 is also
not a member of itself. So we have to add R1 to get a better approximation R2.

R2 ¼ { { }; Cats; { { }; Cats} }:

But R2 is also not a member of itself and so we would have to add R2 and keep on with
this as well as throwing in other sets that come along and are normal. A set is normal if
it is not a member of itself.

Figure 5.
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The Form
We take to exist

Arises
From

Framing 
Nothing.

G. Spencer-Brown



Eigenforms can 
transcend the domains

in which they 
originate.



T(x) = 1 + ax

T(T(x)) = 1 + a(1+ ax) = 1 + a + aax

E = 1+ a+ aa + aaa + aaaa + ...

E = 1 + a(1 + a +aa + aaa + ...) = 1 + aE

E = 1 + aE

E = T(E).

An Example



What about a = 2 ?
E = 1 + 2 + 4 + 8 + ... 

E = 1 + 2E 
implies that 

E = -1.

  -1 = 1 + 2 + 4 + 8 + ...  !!?

The meaning is hidden:

1+2 = -1 + 4
1+2+4 = -1 + 8

1+2+4+8 = -1 + 16
...

1 + 2 + 4 + 8 + ... = “-1 + 2^{Infinity}”



The eigenform always exists, but
it may be imaginary with 
respect to our present

Reality.

If  i = -1/i, 
then

i i = -1.
There is no real number whose 

square is minus one.

1

i

-1

-i



f(x) = a + b/x
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The Non-Locality of Impossibility













The Imaginary
and The Real



Set Theory

A set is a collection of objects.
These objects are the members of the set.

Two sets are equal exactly when
they have the same members.

The simplest set is the empty set
{ }.



and effectively with others. For each of us, there is a continual 
manufacture of eigenforms (tokens for eigenbehaviour). Such 
tokens will not pass as the currency of communication unless we 
achieve mutuality as well. Mutuality itself is a higher eigenform.  As 
with all eigenforms, the abstract version exists. Realization happens 
in the course of time. 
 
 
IX. Cantor's Diagonal Argument and Russell's Paradox 
Let AB mean that B is a member of A. 

 

Cantor's Theorem. Let S be any set (S can be finite or infinite). 
Let P(S) be the set of subsets of S. Then P(S) is bigger than S in the 
sense that for any mapping F: S -----> P(S) there will be subsets C of 
S (hence elements of F(S)) that are not of the form F(a) for any a in 
S. In short ,the power set P(S) of any set S is larger than S. 
 
Proof. Suppose that you were given a way to associate to each 
element x of a set S a subset F(x) of S. Then we can ask whether x is 
a member of F(x). Either it is or it isn't.  So lets form the set of all  x 
such that x is not a member of F(x). Call this new set C. We have the 
defining equation for C : 

Cx = ~F(x)x. 
Is C =F(a) for some a in S? 
If C=F(a) then for all x we have 
F(a)x = ~F(x)x. 
Take x =a. Then  
F(a)a = ~F(a)a. 
This says that a is a member of F(a) if and only if a is not a member 
of F(a).  This shows that indeed C cannot be of the form F(a), and we 
have proved Cantor's Theorem that the set of subsets of a set is 
always larger than the set itself. // 
 
Note the problem that the assumption that C = F(a) gave us. 
If C = F(a), then F(a)a = ~F(a)a. We would have a fixed point for 
negation. But there is no fixed point for negation in classical logic! 
If we had enlarged the truth set to   
 

{T, F, I}   
 
where ~I=I is an eigenform for negation, then F(a)a would have 
value I. What does this mean?  It means that the index  a of the set 
F(a) corresponding would have an oscillating  membership value.  

Cantor’s Theorem in a Nutshell:  P(X) > X.



Let Aleph denote all sets whose members are sets.
Think of Aleph as all sets generated from the empty set

by possibly infinite processes.

Note that every object in Aleph is a set of sets.
Hence every object in Aleph is a subset of Aleph.

Suppose that Aleph itself is a set.

And by the same token
(take note of this figure of speech!)

every subset of Aleph is a collection of sets,
and hence is a member of Aleph.

Therefore P(Aleph) = Aleph.

Cantor’s Paradise is Not a Member of Itself.

Therefore Aleph is not a set!!



Russell’s Paradox

Rx = ~xx

RR = ~RR

R is the set of all sets that are not members 
of themselves.

R  is a member of itself 
if and only if 

R is not a member of itself.



Self-Mutuality and Fundamental Triplicity

Trefoil as self-mutuality.
Loops about itself.

Creates three loopings
In the course of

Closure.



Observation as Linking

A observes B

A B A B



Self-Observation and Observing Observing

A observing A

unstable stable

switch



Patterned Integrity

The knot is information independent
of the substrate that carries it.



dimension. After that invention, it turned out that the diagrams
represented knotted and linked curves in space, a concept far
beyond the ken of those original flatlanders.

Set theory is about an asymmetric relation called membership.
We write a  ε  S  to say that a is a member of the set S. And we are
loathe to allow a to belong to b, b to belong to a (although there is
really no law against it). In this section we shall diagram the
membership relation as follows:

a
b

a

a bε

The entities a  and b that are in the relation a εεεε  b are diagrammed as
segments of lines or curves, with the a -curve passing underneath the
b -curve.  Membership is represented by under-passage of curve
segments.  A curve or segment with no curves passing underneath it
is the empty set.

{   }

{ {  }  }

{   }

Knot Sets

Crossing 
as Relationship

In the diagram above, we indicate two sets. The first (looking like the
mark) is the empty set. The second, consisting of a mark crossing
over another mark, is the set whose only member is the empty set.
We can continue this construction, building again the von Neumann
construction of the natural numbers in this notation:

{ {} {{}} }

{ {} {{}} {{} {{}}} }

{}

{{}}

This notation allows us to also have sets that are members of
themselves,

a aε

a

a = {a}
and sets can be members of each other.a

b
a={b}
b={a}

Mutuality is diagrammed as topological linking. This leads the
question beyond flatland: Is there a topological interpretation for this
way of looking at set-membership?

Consider the following example, modified from the previous one.

b
a

a = {}
b = {a,a}

b

a
a={}
b={}

topological
equivalence

The link consisting of a  and b  in this example is not topologically
linked. The two components slide over one another and come apart.
The set a remains empty, but the set b changes from b = {a,a} to
empty. This example suggests the following interpretation.

Self-
Membership

Mutuality



Architecture of Counting

0

1

2

3



A 
belongs to A.

A does not
belong to A.

Topological Russell (K)not Paradox



a
b

c
d

a = {b}
b = {a, c}
c = {b, d}
d = {c}

In the diagram above, a chain link becomes a linked chain of knot-
sets. But consider the link shown below.

a

bc

a = {b,b}
b = {c,c}
c = {a,a}

The Borrommean Rings
These rings are commonly called the Borromean Rings. The Rings
have the property that if you remove any one of them, then the
other two are topologically unlinked. They form a topological
tripartite relation. Their knot-set is described by the three equations

a = {b,b}
b = {c,c}
c = {a,a}.

Thus we see that this representative knot-set is a "scissors-paper-
stone" pattern. Each component of the Rings lies over one other
component, in a cyclic pattern. But in terms of the equivalence
relation on knot sets that we have used, the knot set for the Rings is
empty (by pair cancellation)!

The example of the Borrommean Rings suggests that we should
generalize the notion of knot-sets so that the Rings represent a non-
trivial "set" in this generalization. The generalization should also be
invariant under the Reidemeister moves.

a
b

c
d

a = {b}
b = {a, c}
c = {b, d}
d = {c}

In the diagram above, a chain link becomes a linked chain of knot-
sets. But consider the link shown below.

a

bc

a = {b,b}
b = {c,c}
c = {a,a}

The Borrommean Rings
These rings are commonly called the Borromean Rings. The Rings
have the property that if you remove any one of them, then the
other two are topologically unlinked. They form a topological
tripartite relation. Their knot-set is described by the three equations

a = {b,b}
b = {c,c}
c = {a,a}.

Thus we see that this representative knot-set is a "scissors-paper-
stone" pattern. Each component of the Rings lies over one other
component, in a cyclic pattern. But in terms of the equivalence
relation on knot sets that we have used, the knot set for the Rings is
empty (by pair cancellation)!

The example of the Borrommean Rings suggests that we should
generalize the notion of knot-sets so that the Rings represent a non-
trivial "set" in this generalization. The generalization should also be
invariant under the Reidemeister moves.



a

b

a={b}

b={a}
 

 
Mutuality is diagrammed as topological linking. This leads the 
question beyond flatland: Is there a topological interpretation for 
this way of looking at set-membership?  
 
Consider the following example, modified from the previous one. 
 

b
a

a = {}

b = {a,a}

b

a

a={}

b={}

topological

equivalence

 
 
The link consisting of a and b in this example is not topologically 
linked. The two components slide over one another and come apart. 
The set a remains empty, but the set b changes from b = {a,a} to 
empty. This example suggests the following interpretation. 

Knot Sets are
“Fermionic”.

Identical elements
cancel in pairs.

(No problem with
invariance

under third
Reidemeister move.)



a = {a, a, a}
a = {}

 
 
We are happy that many topologically non-trivial links correspond 
to non-trivial knot-sets. 
 

a

b

c

d

a = {b}

b = {a, c}

c = {b, d}

d = {c}
 

 
In the diagram above, a chain link becomes a linked chain of knot-
sets. But consider the link shown below. 

a

bc

a = {b,b}
b = {c,c}
c = {a,a}

The Borrommean Rings
 

These rings are commonly called the Borromean Rings. The Rings 
have the property that if you remove any one of them, then the 
other two are topologically unlinked. They form a topological 
tripartite relation. Their knot-set is described by the three equations 
 

Alas, knot sets do not know knots.
But they do provide a non-standard 

model for sets.



Set theory is about an asymmetric relation called membership.  

We write a ! S to say that a is a member of the set S.   In this 

section we shall diagram the membership relation as follows: 

a
b

a

a b!

 
This is knot-set notation. 
In this notation, if b goes once under a, we write a={b}. If b goes 
twice under a, we write a={b,b}. This means that the "sets" are multi-
sets, allowing more than one appearance of a member. For a deeper 
analysis of the knot-set structure see [ KL]. 
 
This knot-set notation allows us to have sets that are members of 
themselves, 

!" "

" = {"}

"

 
and sets can be members of each other. 

a

b

a={b}

b={a}
 

Here a mutual relationship of a and b is diagrammed as topological 
linking.  

Set theory is about an asymmetric relation called membership.  

We write a ! S to say that a is a member of the set S.   In this 

section we shall diagram the membership relation as follows: 

a
b

a

a b!

 
This is knot-set notation. 
In this notation, if b goes once under a, we write a={b}. If b goes 
twice under a, we write a={b,b}. This means that the "sets" are multi-
sets, allowing more than one appearance of a member. For a deeper 
analysis of the knot-set structure see [ KL]. 
 
This knot-set notation allows us to have sets that are members of 
themselves, 

!" "

" = {"}

"

 
and sets can be members of each other. 

a

b

a={b}

b={a}
 

Here a mutual relationship of a and b is diagrammed as topological 
linking.  



There is an approach to studying knots and links that is very close 
to our knot sets, but starts from a rather different premise. 
In this approach each arc of the diagram receives a label or "color". 
An arc of the diagram is a continuous curve in the diagram that 
starts at one undercrossing and ends at another undercrosssing.  
For example, the trefoil diagram below has three arcs. 
 

a

b

cT

b = a*c

c = b*a

a = c*b

x

y

z

z=x*y

 
 
Each arc corresponds to an element of a "Trefoil Color Algebra"  
IQ(T) where T denotes the trefoil knot. We have that IQ(T) is 
generated by colors a,b and c with the relations 

a*a = a, 
b*b = b, 
c*c = c, 

a*b = b*a = c, 
b*c = c*b = a, 
a*c = c*a = b. 

 Each of these relations in the diagram above  is a description of one 
of the crossings in T. The full set of relations describes the coloring 
rules for an algebra that contains these relations and allows any two 
elements to be combined to a third element. This three-element 
algebra is particularly simple. If two colors are different, they 
combine to form the remaining third color. If two colors are the 
same, they combine to form the same color. 
 
When we take an algebra of this sort, we want its coloring structure 
to be invariant under the Reidemeister moves (illustrated below).  
This means that when you make a new diagram from the old 
diagram by a topological move, the resulting new diagram inherits a 

A Reflexive Algebra- The Quandle

There is an approach to studying knots and links that is very close 
to our knot sets, but starts from a rather different premise. 
In this approach each arc of the diagram receives a label or "color". 
An arc of the diagram is a continuous curve in the diagram that 
starts at one undercrossing and ends at another undercrosssing.  
For example, the trefoil diagram below has three arcs. 
 

a

b

cT

b = a*c

c = b*a

a = c*b

x

y

z

z=x*y

 
 
Each arc corresponds to an element of a "Trefoil Color Algebra"  
IQ(T) where T denotes the trefoil knot. We have that IQ(T) is 
generated by colors a,b and c with the relations 

a*a = a, 
b*b = b, 
c*c = c, 

a*b = b*a = c, 
b*c = c*b = a, 
a*c = c*a = b. 

 Each of these relations in the diagram above  is a description of one 
of the crossings in T. The full set of relations describes the coloring 
rules for an algebra that contains these relations and allows any two 
elements to be combined to a third element. This three-element 
algebra is particularly simple. If two colors are different, they 
combine to form the remaining third color. If two colors are the 
same, they combine to form the same color. 
 
When we take an algebra of this sort, we want its coloring structure 
to be invariant under the Reidemeister moves (illustrated below).  
This means that when you make a new diagram from the old 
diagram by a topological move, the resulting new diagram inherits a 



(a*b)*c = c*c = c
a*(b*c) = a*a = a

(a*c)*(b*c) = b*a = c = (a*b)*c

Non-Associative

Right-Distributive



 
Here is the example for the Figure Eight Knot. 

0

1 2

3

5

2 x 1 -0 = 1

2 x 2 -1 = 3

2 x 3 - 1 = 5

-> 0 = 5

Z/5Z = {0,1,2,3,4} with 0 = 5.  
 
We have shown how an attempt to label the arcs of the knot 
according to the quandle rule  

a

b

c = 2b -a = a*b

 
 a*b = 2b -a, leads to a labelling of the Figure Eight knot in  
Z/5Z. In our illustration we have shown that there is a compatible 
coloring using four out of the five elements of Z/5Z. If you apply 
Reidemeister moves to the diagram for the Figure Eight knot you 
will see that other versions of the knot require all five colors. It is 
interesting to prove that there is no diagram of the Figure Eight knot 
that can be colored in less than four colors. 
 
It should be noted that the knot diagrams give a remarkable picture 
of non-associative algebra structure and that each arc-label a in a 
diagram is both an element of the algebra and a transformation of 
the algebra to itself via the mapping Oa(x) = x*a .  

Note that the right distributivity of this operation has the equation 
 

Oa(x*y) = (x*y)*a = (x*a)*(y*a) = Oa(x)*Oa(y) 

 
That is, we have 
 

Oa(x*y) = Oa(x)*Oa(y). 



unique coloring from the old diagram. Then one can see from this 
that the trefoil must be knotted since all diagrams topologically 
equivalent to it will carry three colors, while an unknotted diagram 
can carry only one color. 
 
As the next diagram shows, invariance of the coloring rules under 
the Reidemeister moves implies the  the following global relations 
on the algebra: 
 

x*x = x 
(x*y)*y= x 

(x*y)*z = (x*z)*(y*z) 
  
for any x, y and z in the algebra (set of colors) IQ(T). 
An algebra that satisfies these rules is called an Involutory Quandle 
 [9], hence the initials IQ. Perhaps the most remarkable property of 
the quandle is its right-distributive law corresponding to the third 
Reidemeister move, as illustrated below. The reader will be 
interested to observe that in a multiplicative group G, the following 

operation satisfies all the axioms for the quandle: g*h = hg-1h. 
In an additive and commutative version of this axiom we can write 
a*b = 2b - a. Here the models that are most useful to the knot 
theorist are to take a and b to be elements of the integers Z or 
elements of the modular number system Z/dZ = Zd for some 

appropriate modulus d. The knot being analyzed restricts the 
modular possiblities. In the case of the trefoil knot the only 
possiblity is d = 3, and in the case of the Figure Eight  knot (shown 
after the Reidemeister moves below) the only possibility is d =5. 
This analysis then shows that there cannot be any sequence of 
Reidemeister moves connecting the Trefoil and the Figure Eight. 
They are distinct knot types. 
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for each x in TRI, take the consequences of that and continue. We 
leave the exploration of this extension to the reader. 
 
 
Left Distributivity 
We have written the quandle as a right-distributive structure with 
invertible elements. It is mathematically equivalent to use the 
formalism of a left  distributive operation. In left distributive 
formalism we have A*(b*c) = (A*b)*(A*c).  This  corresponds 
exactly to the interpretation that each element A in Q is a mapping 
of Q to Q where the mapping A[x] = A*x is a structure preserving 
mapping from Q to Q. 

A[b*c] = A[b]*A[c]. 
We can ask of a domain that every element of the domain is itself 
a structure preserving mapping of that domain. This is very similar 
to the requirement of reflexivity and, as we have seen in the case of 
quandles, can often be realized for small structures such as the 
Trefoil quandle.   
 
We call a domain M with an operation * that is left distributive a  
magma. Magmas are more general than the link diagrammatic 
quandles. We take only the analog of the third Reidemeister move 
and do not assume any other axioms. Even so there is much 
structure here. A magma with no other relations than left-
distributivity is called a free magma.  
 
The search for structure preserving mappings can occur in rarefied 
contexts. See for example the work of Laver and Dehornoy [21, 9] 
who studied mappings of set theory to itself that would preserve all 
definable structure in the theory. Dehornoy realized that many of 
the problems he studied in relation to set theory were accessible in 
more concrete ways via the use of knots and braids. Thus the knots 
and braids become a language for understanding  formal properties 
of self-embedded structure.  
 
Structure preserving mappings of set theory must begin as the 
identity mapping since the relations of sets are quite rigid at the 
beginning. (You would not be able to map an empty set to a set that 
was not empty for example, and so the empty set would have to go 
to itself.) The existence of non-trivial structure preserving mappings 
of set theory  questions the boundaries of definablity and involves 
the postulation of sets of very large size. See [16] for a good 
exposition of the philosophical issues about such embeddings and 



Magma and Reflexivity

A*(B*C) = (A*B)*(B*C)



a*b = c = b*a, a*c = b = c*a and b*c = a = c*b.  
In other words, each element combines with itself to produce itself, 
and any pair of distinct elements combine to produce the remaining 
element that is different from either of them. The reader can verify 
that TRI is indeed a magma. For example, 

a*(b*c) = a*(a )= a 
(a*b)*(a*c) = (c)*(b) = a. 

Note also that the multiplication in this magma is not associative: 
a*(a*b) = a*c = b 
(a*a)*b = a*b = c. 

We will return to this magma in the next section and see that TRI is  
intimately related to the simplest knot, the trefoil knot. 
 
Another example to think about is OM, the free magma generated 
by one element J. Here we consider all possible expressions and 
ways that b can combine with itself and with other elements 
generated from itself. Remarkably, the free magma is an infinitely 
complex structure. For example, note the following consequences of 
the distributive law (here using XY instead of X*Y): 

J(JJ) = ((JJ)(JJ))  
= ((JJ)J)((JJ)J))  

= ((((JJ)J)(JJ))(((JJ)J)J))). 
In the free magma an infinite structure is generated from one 
element and all its patterns of self-interaction. 
 
Suppose further that  we assume that  
every structure preserving mapping of the magma M is represented 
by an element of the magma M.  This will place us in the position of 
creating from the magma something like a reflexive domain.   
 
In the next section we shall see that magmas arise very naturally in 
the topology of knots and links in three-dimensional space. This is 
an excellent way to think about them ,and it provides a way to think 
about reflexivity in terms of topology. Here we take an abstract 
point of view and and see when the structure preserving nature of 
elements of a magma leads to the analog of a reflexive domain. 
 
I shall call a magma M reflexive if it has the property that every 
structure preserving mapping of the algebra is realized by an 
element of the algebra and  (x*x)*z = x*z for all x and z in M.  
A special case of this last property would be where  
x*x = x for all x in M. We shall see this property come up in the 
knot theoretic interpretations of the next section. 

 
Suppose that M is a reflexive magma. Does M satisfy the fixed point 
theorem?  We find that the answer is yes: 
 
Fixed Point Theorem for Reflexive Magmas. Let M be a reflexive 
magma. Let  F:M ----> M be a structure preserving mapping of M to 
itself. Then there exists an element b in M such that F(p) = p. 
 
Proof. Let F:M -----> M be any structure preserving mapping of the 
magma M to iteself. This means that we assume that F(x*y) = 
F(x)*F(y) for all x and y in M. Define G(x) = F(x*x) and regard  
G:M ----> M. Is G structure preserving? We must compare 
G(x*y) = F((x*y)*(x*y)) = F(x*(y*y)) with 
G(x)*G(y) = F(x*x)*F(y*y) = F((x*x)*(y*y)). 
Since (x*x)*z = x*z for all x and z in M, we conclude that  
G(x*y) = G(x)*G(y) for all x and y in M. 
Thus G is structure preserving and hence there is an element g of M 
such that G(x) = g*x for all x in M. Therefore we have 
g*x = F(x*x), whence g*g = F(g*g). For p = g*g, we have 
p = F(p). This completes the proof. // 
 
This analysis shows that the concept of a magma is very close to our 
notion of reflexive domain. The examples of magmas related to knot 
theory, given in the previous section show that magmas are not just 
abstract structures, but are related to directly to the properties of 
space and topology in the worlds of communication and perception 
in which we live.  
 
VII. Knot Sets, Topological Eigenforms and the Left-
Distributive Magma 
 
We shall use knot and link diagrams to represent sets.  More about 
this point of view can be found in the author's paper "Knot Logic" 
[9].   In this notation the eigenset ! satisfying the equation 

!= {!} 

is a topological curl. If you travel along the curl you can start as a 
member and find that after a while you have become the container. 
Further travel takes you back to being a member in an infinite 
round. In the topological realm ! does not have any associated 

paradox. This section is intended as an introduction to the idea 
of topological eigenforms, a subject that we shall develop more fully 
elsewhere. 
 

p



This slide show has been only an introduction 
to certain mathematical and conceptual

points of view about reflexivity.
In the worlds of scientific, political and economic 

action these principles come into play in the
way structures rise and fall in the 

play of realities that are created from
(almost) nothing by the participants in their

desire to profit, have power or even just 
to have clarity and understanding. Beneath

the remarkable and unpredictable structures
 that arise from such interplay is a lambent
simplicity to which we may return, as to the 

source of the world.


