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ABSTRACT 

 
In this paper, a new method for fingerprint recognition 
with wavelet transform and Principal Component 
Analysis (PCA) is developed using MatLab. Fingerprint 
images used for this purpose are taken in grey-scale 
without any pre-processing (i.e., smoothing, minutiae 
extraction, ridge thinning and ridge segmentation). 
Fingerprint images are chosen in such a way that the core 
point is located at the center of the image. The proposed 
algorithm is tested on a small fingerprint database using 
PCA and recognition rate of more than 90% is obtained. 
This algorithm can be used on a desktop computer to 
recognize small group of fingerprints effectively and 
efficiently. 
 
Keywords:  Wavelet Transform, Fingerprint, DWT, 
PCA, Eigenfingers. 
 

1. INTRODUCTION 
 
Fingerprints are imprints formed by friction ridges of the 
skin in fingers and thumbs. Fingerprint recognition 
remains as one of the most prominent and the oldest 
biometric identification methods. The pattern of ridges 
and furrows as well as the minutiae points in the 
fingerprint are believed to be unique for each and every 
human being. The ridge characteristics that occur at a 
ridge bifurcation or at ridge ending are called as Minutiae 
points [1].  
 
Fingerprint matching can be classified into two 
categories: minutae based and image based. Minutiae 
based technique is the oldest one which is employed 
almost everywhere. This technique first finds the 
minutiae points and their corresponding position on the 
finger and this information is stored as features of the 
fingerprint which later used for matching purpose. 
Sometimes it is very difficult to extract the minutiae 
points from a low quality fingerprint and preprocessing of 
the image is a must in order to effectively extract the 
features. Minutiae based approach also uses more 
memory and it is a time consuming process. While the 

image based technique has solved some of the issues of 
the minutiae based approach. Image based approach 
offers much higher computation efficiency with 
minimum pre-processing and proves also effective even 
when the image quality is low [2]. However, this 
approach is vulnerable to shape distortions as well as 
variation in position, scale and orientation angle.  
 

2. DISCRETE WAVELET TRANSFORM 
 
Discrete Wavelet Transform (DWT) is the recent 
advancement in the signal processing field. Taking DWT 
of a signal gives important characteristics of the signal 
[3]. DWT can be applied to both one and two dimensions. 
In this paper, fingerprint is taken as two dimensional 
grey-scale image and each row of the image is 
represented as a one dimensional signal. One dimensional 
DWT is applied to each row of the grey-scale image. 
Based on the simulation results obtained only the 
approximate coefficients are retained while the detail 
coefficients which are insignificant and do not contribute 
much to the recognition accuracy were neglected. After 
applying DWT to all the rows and down-sampling the 
resulting approximate coefficients, a compressed version 
of the image is obtained. Similarly same method is 
applied to each columns of the resultant image. This 
process is known as one level wavelet decomposition of 
the image. In our approach we have continued this 
process to achieve two level decomposition. The final 
image is much smaller version of the fingerprint image 
that was initially taken. This method not only simplifies 
the computations involved to extract features but also 
consumes less memory to store the approximate 
coefficients acquired from the fingerprint image.  

    
               (a)           (b) 
Figure 1: Fingerprint image acquired from different 
person (a), and their corresponding two level DWT 
approximate image (b).  
 



   
   
   

  

  

3. PRINCIPAL COMPONENT ANALYSIS 
 
Principal Components Analysis (PCA) also known as 
Karhunen and Leove (KL) transform, is a way of 
identifying patterns in data, and expressing the data in 
such a way as to highlight their similarities and 
differences. Since patterns in data can be hard to find in 
data of high dimension, where the luxury of graphical 
representation is not available, PCA is a powerful tool for 
analyzing data [4]. The other main advantage of PCA is 
that once you have found these patterns in the data, and 
you compress the data, ie. by reducing the number of 
dimensions, without much loss of information. Here an 
attempt to use this method to recognize fingerprint 
images has been made and satisfactory results were 
obtained. 
 
In mathematical terms, the objective is to find the 
principal components of the distribution of fingerprint, or 
the eigenvectors of the covariance matrix of the set of 
fingerprint images. These eigenvectors can be thought of 
as a set of features which together characterize the 
variation between fingerprint images. Each image 
location contributes more or less to each eigenvector, so 
that we can display the eigenvector as a sort of complex 
fingerprint called an eigenfinger.  
 
Each fingerprint image in the training set can be 
represented exactly in terms of a linear combination of 
the eigenfinger. The number of possible eigenfinger is 
equal to the number of fingerprint images in the training 
set. However, the fingerprint images can also be 
approximated using only the “best” eigenfingers—those 
that have the largest eigenvalues, and which therefore 
account for the most variance within the set of fingerprint 
images. The primary reason for using fewer eigenfingers 
is computational efficiency.  
 
The eigenfinger approach for fingerprint recognition 
involves the following initialization operations: 

1. Acquire a set of training images. 
2. Calculate the eigenfingers from the training set, 

keeping only the best M images with the highest 
eigenvalues. These M images define the “finger 
space”. As new fingerprint images are 
experienced, the eigenfingers can be updated. 

3. Calculate the corresponding distribution in M-
dimensional weight space for each known 
individual (training image), by projecting their 
fingerprint images onto the finger space. 

 
Having initialized the system, the following steps are 
used to recognize new fingerprint images: 

1. Given an image to be recognized, calculate a set 
of weights of the M eigenfingers by projecting it 
onto each of the eigenfingers. 

2. Calculate the characteristic weight pattern of the 
new fingerprint image.  

3. Using Euclidian distance method to classify the 
image. 

4. (Optional) Update the eigenfingers and/or 
weight patterns.  

 
 

4. CALCULATING EIGENFINGERS 
 
Let a fingerprint image Γ(x,y) be a two-dimensional N by 
N array of intensity values after taking wavelet transform. 
An image may also be considered as a vector of 
dimension 2N , so that a typical image of size 64 by 64 
becomes a vector of dimension 4096, or equivalently, a 
point in 4096-dimensional space. An ensemble of images, 
then, maps to a collection of points in this huge space.  
 
Fingerprint images, being similar in overall 
configuration, will not be randomly distributed in this 
huge image space and thus can be described by a 
relatively low dimensional subspace. The main idea of 
the principal component analysis is to find the vector that 
best account for the distribution of these images within 
the entire image space. These vectors define the subspace 
of fingerprint images, which we call “finger space”. Each 
vector is of length 2N , describes an N by N image, and is 
a linear combination of the original fingerprint images. 
Because these vectors are the eigenvectors of the 
covariance matrix corresponding to the original 
fingerprint images, and because they are similar to 
fingerprint in appearance, they are referred to as 
“eigenfingers”.  
Let the training set of fingerprint images be 1Γ , 2Γ , 3Γ , 

…, MΓ . The average image of the set if defined 

by ∑
=
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by the vector Ψ−Γ=Φ nn . An example training set is 

shown in Figure 1a, with the average image Ψ shown in 
Figure 1b. This set of very large vectors is then subject to 
principal component analysis, which seeks a set of M 
orthonormal vectors, nµ , which best describes the 

distribution of the data. The kth vector, kµ is chosen 
such that 
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The vectors kµ and scalars kλ are the eigenvectors and 
eigenvalues, respectively, of the covariance matrix [4] 
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where the matrix ]...[ 21 MA ΦΦΦ= . The matrix C, 

however, is 2N  by 2N , and determining the 2N  
eigenvectors and eigenvalues is an intractable task for 
typical image sizes [4]. A computationally feasible 
method is needed to find these eigenvectors. 
 
If the number of data points in the image space is less 
than the dimension of the space ( 2NM < ), there will 
be only 1−M , rather than 2N , meaningful eigenvectors 
(the remaining eigenvectors will have associated 
eigenvalues of zero). Fortunately, we can solve for the 

2N -dimensional eigenvectors in this case by first 
solving for the eigenvectors of and M by M matrix—e.g., 
solving a 25 x 25 matrix rather than a 8464 x 8464 
matrix—and then taking appropriate linear combinations 
of the fingerprint images nΦ . Consider the eigenvectors 

nν of AAT such that 

nnn
T AA νλν =       (4) 

Premultiplying both sides by A, we have 

nnn
T AAAA νλν =       (5) 

from which we see that nAν are the eigenvectors 

of TAAC = . 
 
Following this analysis, we construct the M by M 
matrix AAL T= , where n

T
mmnL ΦΦ= , and find the M 

eigenvectors nν of L. These vectors determine linear 
combinations of the M training set fingerprint images to 
form the eigenfingers nµ : 
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With this analysis the calculations are greatly reduced, 
from the order of the number of pixels in the images 
( 2N ) to the order of the number of images in the training 

set (M). In practice, the training set of fingerprint images 
will be relatively small ( 2NM < ), and the calculations 
become quite manageable [4]. The associated eigenvalues 
allow us to rank the eigenvectors according to their 
usefulness in characterizing the variation among the 
images. 
 
 

5. USING EIGENFINGERS TO CLASSIFY A 
FINGERPRINT IMAGE 

 
The eigenfinger images calculated from the eigenvectors 
of L span a basis set with which to describe fingerprint 
images. As mentioned before, the usefulness of 
eigenvectors varies according their associated 
eigenvalues. This suggests we pick up only the most 
meaningful eigenvectors and ignore the rest, in other 
words, the number of basis functions is further reduced 
from M to M’ (M’<M) and the computation is reduced as 
a consequence.  
 
A new fingerprint image Γ is transformed into its 
eigenfinger components (projected onto “finger space”) 
by a simple operation 
 

)( Ψ−Γ= nn µω       (7) 
for n=1,……,M’. This describes a set of point-by-point 
image multiplications and summations.  
 
The weights form a vector ],...,,[ '21 M

T ωωω=Ω  that 
describes the contribution of each eigenfinger in 
representing the input fingerprint image, treating the 
eigenfingers as a basis set for fingerprint images. The 
vector may then be used in a standard pattern recognition 
algorithm to find which of a number of predefined finger 
classes, if any, best describes the fingerprint. The 
simplest method for determining which finger class 
provides the best description of an input fingerprint 
image is to find the finger class k that minimizes the 
Euclidian distance 
 

22 )( kk Ω−Ω=ε       (8) 

 
where kΩ  is a vector describing the kth finger class. The 

finger classes kΩ  are calculated by averaging the results 
of the eigenfinger representation over a small number of 
fingerprint images (as few as one) of each individual. A 
fingerprint is classified as “unknown”, and optionally 
used to create a new finger class. 
 



   
   
   

  

  

Because creating the vector of weights is equivalent to 
projecting the original fingerprint image onto to low-
dimensional finger space, many images (most of them 
looking nothing like a fingerprint) will project onto a 
given pattern vector. This is not a problem for the system, 
however, since the distance ε  between the image and the 
finger space is simply the squared distance between the 
mean-adjusted input image Ψ−Γ=Φ  and 

∑
=

=Φ
'

1

M

i
iif µω , its projection onto finger space: 

22
fΦ−Φ=ε       (9) 

 
Thus there are four possibilities for an input image and its 
pattern vector: (1) near finger space and near a finger 
class; (2) near finger space but not near a known finger 
class; (3) distant from finger space and near a finger 
class; (4) distant from finger space and not near a known 
finger class. 
 
In the first case, an individual is recognized and 
identified. In the second case, an unknown individual is 
present. The last two cases indicate that the image is not a 
fingerprint image. Case three typically shows up as a 
false positive in most recognition systems; in this 
framework, however, the false recognition may be 
detected because of the inclusion of no rejection option.  
 
6. SUMMARY OF FINGERPRINT RECOGNITION 

PROCEDURE 
 
The eigenfinger approach for fingerprint recognition is 
summarized as follows: 

1. Collect a set of characteristic fingerprint images 
of the known individuals. This set should 
include a number of images for each person, 
with some variation in position (say five images 
of five people, so M=25). 

2. Take the two-level DWT on each row and 
column of the image as explained earlier. 

3. Calculate the (M x M) matrix L, find its 
eigenvectors and eigenvalues, and choose the M’ 
eigenvectors with the highest associated 
eigenvalues (let M’ = M in this example). 

4. Combine the normalized training set of images 
according to Eq. (6) to produce the M’ 
eigenfingers ',......,1, Mkk =µ . 

5. For each known individual, calculate the class 
vector kΩ  by averaging the eigenfinger pattern 

vectors Ω  [from Eq. (8)] calculated from the 
original (five) images of the individual. Choose 

a threshold εθ that defines the maximum 
allowable distance from any finger class, and a 
threshold θ  that defines the maximum 
allowable distance from finger space [according 
to Eq. (9)]. 

6. For each new fingerprint image to be identified, 
calculate its pattern vector Ω , the distance kε  
to each known class, and the distance ε  to 
finger space. If the minimum distance εθε <k  

and the distance θε < , classify the input finger 
as the individual associated with class vector 

kΩ .  
7. (Optional) If the new image is classified as a 

known individual, this image may be added to 
the original set of familiar fingerprint images, 
and the eigenfingers may be recalculated (steps 
1-4). This gives the opportunity to modify the 
finger space as the system encounters more 
instances of known fingerprints. 

 
7. EXPERIMENTAL RESULTS 

 
The proposed algorithm has been tested on a database of 
168 fingerprint images of size 256 x 256 including 8 
images per finger from 21 individuals. The images have 
been selected from the database [5] based on the position 
of the fingerprint pattern inside the image, selecting those 
images whose core point is located close to the centre of 
the image. The fingerprint database consists of 5 arches, 
4 whorls and 12 loops. During the training phase 5 out of 
8 images of each person i.e., 25 images are used and the 
rest 3 including the ones used for training are used during 
recognition phase with no rejection option. 

 
Three experiments have been performed. In the first 
experiment fingerprints from 5 (N) individuals consisted 
of arch, whorl and loop as shown in the figure 2 having 8 
(M) images each were selected from the database [5] and 
was tested with the fingerprint recognition algorithm and 
recognition accuracy for different wavelet filters used is 
listed in the table 1.  

 
Figure 2: Fingerprint images used for experiment 1. 

 
 



   
   
   

  

  

Table 1: Recognition rate vs wavelet filter used in 
experiment 1 

 
Type of 

filter 
Number of 

training 
fingerprints 

Number of 
fingerprint 
recognized 
correctly 

Percentage 
accuracy 

Haar 25/40 39/40 97.5 
Db1 25/40 39/40 97.5 
Db2 25/40 40/40 100 
Db4 25/40 39/40 97.5 
Db5 25/40 40/40 100 
Db6 25/40 40/40 100 

Sym1 25/40 39/40 97.5 
Sym2 25/40 40/40 100 
Sym4 25/40 38/40 95 
Sym6 25/40 40/40 100 

Bior2.4 25/40 40/40 100 
Bior4.4 25/40 40/40 100 
Bior1.1 25/40 39/40 97.5 
Coif1 25/40 39/40 97.5 
Coif2 25/40 39/40 97.5 

Average 98.5 

The second experiment was conducted with the entire 
database [5] consisting all types of fingerprint images. 
Recognition accuracy for the experiment conducted is as 
shown in table 2. 

 
Table 2: Recognition rate vs wavelet filter used in 

experiment 3 
Type of 

filter 
Number of 

training 
fingerprints 

Number of 
fingerprint 
recognized 
correctly 

Percentage 
accuracy 

Haar 25/40 38/40 95 
Db1 25/40 38/40 95 
Db2 25/40 39/40 97.5 
Db4 25/40 38/40 95 
Db5 25/40 39/40 97.5 
Db6 25/40 39/40 97.5 

Sym1 25/40 38/40 95 
Sym2 25/40 39/40 97.5 
Sym4 25/40 37/40 92.5 
Sym6 25/40 39/40 97.5 

Bior2.4 25/40 38/40 95 
Bior4.4 25/40 39/40 97.5 
Bior1.1 25/40 38/40 95 
Coif1 25/40 38/40 95 
Coif2 25/40 38/40 95 

Average 95.83 
 

In the last experiment fingerprint images from 5 
individual having only loops were selected from the 
database [5] having 8 (M) images each and the 
recognition algorithm was applied. Table 3 gives the 
recognition accuracy for different wavelet filters used.  

Table 3: Recognition rate vs wavelet filter used in 
experiment 4 

Type of 
filter 

Number of 
training 

fingerprints 

Number of 
fingerprint 
recognized 
correctly 

Percentage 
accuracy 

Haar 105/168 150/168 89.29 
Db1 105/168 150/168 89.29 
Db2 105/168 150/168 89.29 
Db4 105/168 148/168 88.09 
Db5 105/168 150/168 89.29 
Db6 105/168 149/168 88.69 

Sym1 105/168 149/168 88.69 
Sym2 105/168 149/168 88.69 
Sym4 105/168 150/168 89.29 
Sym6 105/168 151/168 89.88 

Bior2.4 105/168 154/168 91.67 
Bior4.4 105/168 150/168 89.29 
Bior1.1 105/168 149/168 88.69 
Coif1 105/168 150/168 89.29 
Coif2 105/168 149/168 88.69 

Average 89.21 
 
A comparison of our method with the method proposed 
by Y. H. Fung and Y. H. Chan in [2] is shown in table 4. 
Here the results from the experiment 2 are compared with 
the results obtained using 2-NN in [2].   
  

Table 4: Comparison of recognition rate of Y. H. Fung 
[2] and ours. 

Percentage 
accuracy 

Type 
of 

filter 

Number of 
training 

fingerprints 

Number of 
fingerprint 
recognized 
correctly  

Ours 
Method 

proposed 
in [4] 

using 2-
NN 

Db5 105/168 150/168 89.29 88.10 
Db6 105/168 149/168 88.69 88.10 

Db10 105/168 150/168 89.29 77.38 
Sym6 105/168 151/168 89.88 91.67 
Sym9 105/168 149/168 88.69 92.86 

Sym10 105/168 150/168 89.29 85.71 
Average 89.19 87.30 

 



   
   
   

  

  

From table 4 it can be seen that the proposed method 
gives better accuracy for most of the wavelet filters than 
the one proposed by Y. H. Fung and Y. H. Chan in [2].  
 
From tables 1 and 2, it is evident that for the database 
chosen the algorithm yields different results when 
different family of wavelet filters are used. When only 
fingerprints from 5 people were taken from the database, 
the average accuracy of recognition was found to be 
98.5%. When the entire database was chosen the average 
accuracy of the system was found to be 89.21%. Based 
on the average accuracy obtained for different set of 
fingerprint images from the database [5], it can be 
concluded that as the number of people are increased, the 
accuracy of the system decreases. It can also be noted 
from the table 1 that for a small set of database at least 
few filters gave 100% recognition rate whereas for a 
larger database none of the filters yielded the same.  
 
From tables 1 and 3, it can be concluded that the 
algorithm works better when different types of fingerprint 
images (whorl, loop and arch) are used rather than the 
same type (only loops, or whorls, or arches).  
   
 

8. CONCLUSIONS 
 
In this paper, we have proposed a simple method for 
fingerprint identification using wavelets and principal 
component analysis. This algorithm can be implemented 
on a desktop computer and used for identifying a small 
group of people. Since the images are in greyscale and 
carefully chosen in such a way as to eliminate the 
preprocessing, thus providing the computational 
efficiency to the system developed. Though the wavelet 
transform stage is slow because of single level wavelet 
decomposition used compared to the rest of the stages but 
overall speed of the system is comparable to any other 
algorithms that have been proposed. The method has 
been successfully compared against one of the methods 
recently proposed and results prove that our system is 
capable of doing the same task at a faster rate with more 
accuracy for small group of people. The high recognition 
rates achieved by our method as well as its low 
computational complexity reveal that the method can be 
used to efficiently solve a security problem involving a 
small number of fingerprint images. 
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