

Software Testing and Quality Assurance

Dennis DeVolder

Department of Computer Science

Western Illinois University

Macomb, Illinois 61455

d-devolder@wiu.edu

Shahin Ghazanshahi

Department of Electrical Engineering

California State University

Fullerton, CA 92834

sghazanshahi@fullerton.edu

Jeff Zadeh

Department of Mathematics and Computer Science

Virginia State University

Petersburg, VA 23806

jzadeh@att.net

ABSTRACT

Software testing is the execution of software with

actual test data which produce expected results.

There are two basic concerns in software testing:

what test cases should be used, and how many test

cases are necessary? Software quality assurance is

the set of activities that ensure software processes

and products conform to requirements and

standards. In this paper, we will discuss software

testing, software quality assurance and related

issues. This is very important for all software

development, especially for medical related

software.

1. INTRODUCTION

Testing is the process of finding differences

between the expected behavior, specified by the

requirements, and the observed behavior of the

system. Testing is often performed by developers

who were not involved with the construction of the

system. A fault (defect or bug) is the mechanical or

algorithmic cause of an error. The goal of testing is

to maximize the number of discovered faults, which

then allows developers to correct them and increase

the reliability of the system.

The importance of medical software must not be

underestimated. The success and failure of a

medical practice hinges on these medical software

systems. These software systems are mission

critical and require critical real time systems

development. Medical software systems also are

required independent verification in order to

increase the objectivity and the productivity. The

medical software engineers develop and maintain

these critical software applications by applying

techniques and knowledge from areas of computer

science, computer engineering, biomedical

engineering and project management.

The complexity of current software applications can

be difficult to comprehend for anyone without

experience in modern-day software development.

Client-server and distributed applications, data

communications, and enormous relational databases

have all contributed to the exponential growth in

software complexity. If there are changes in

dependencies among parts of the project, they are

likely to interact, cause problems, and may result in

errors. Time pressures and scheduling of software

projects contribute to these problems. Management

must understand the resulting risks, and software

tester must adopt a plan for continuous extensive

testing to keep the inevitable faults from running out

of control.

2. SOFTWARE TESTING

Software testing is a process which measures the

quality of developed computer software. Usually,

quality is constrained to such topics as correctness,

completeness, security, reliability, efficiency,

portability, maintainability, compatibility, and

usability. Testing can never completely establish

the correctness of the computer software. In case of

a failure, the software does not do what the user

expects.

A common practice of software testing is to provide

a software product to an independent group of

testers after finishing the product. As important as

this method is, it is inadequate if it is the sole

method of testing. The better practice is to start

regular, incremental software testing at the

beginning of the project and continue the process

until the project finishes. It is commonly believed

that the earlier a defect in a project is found, the less

expensive it is to fix.

There are two basic concerns in software testing:

what test cases to use and how many test cases are

necessary? Test case selection can be viewed as an

attempt to space the test cases throughout the input

space. Of course, some areas in the domain may be

inherently error-prone and may need extra attention.

A program can be seen as a mapping from a domain

space to an answer space. Given an input, which is

a point in the domain space, the program produces

an output, which is a point in the range. Correctness

in software is defined as the program mapping being

the same as the specification mapping. A test case

should always include the expected output.

A test criterion is a rule about how to select a test

and when to stop it. One basic issue is how to

compare the effectiveness of different test coverage

criteria. The standard approach is to use the

“subsumes” relationship. To say that one criterion

subsumes another means that one criterion is

entirely contained within another. For example, if

one test criterion required every statement to be

executed and another criterion required every

statement to be executed plus some additional tests,

then the second criterion subsumes the first

criterion. Although subsumes is a characteristic that

is used for mapping test criterion, it does not

measure the relative effectiveness of two criteria. In

addition, selecting the minimal set of test cases to

satisfy a criterion is not as effective as choosing

good test cases.

3. TEST CASES

A test case is a set of inputs and expected results

that exercises a program component with the

purpose of exposing failures and detecting as many

faults as possible. Test case selection can be based

on the specifications (functional), the structure of

code, the flow of data, or random selection of test

cases.

Functional Testing: In functional testing, the

specification of the software is used to identify sub -

domains that should be tested. One of the first steps

is to generate a test case for every distinct type of

expected output. Distinctive error messages should

be generated and all special cases should have a test

case. In addition, any tricky situations, common

mistakes and misconceptions should be tested. The

result should be a set of test cases that will test the

program when it is implemented. The generation of

test cases may also help to develop or clarify some

of the expected behavior of the project.

In 1979, Myers posed the following functional

testing problem: Develop a good set of test cases for

a program that accepts three numbers a, b, and c,

interprets those numbers as the lengths of the sides

of a triangle, and outputs the type of the triangle.

He reported that most software developers will not

respond with a good test set. Today, developers

have similar experiences in developing software

products.

Functional testing can be focused on every-

statement, every branch, every path, or sub-domain.

In “every statement” testing, every statement of the

source code should be executed by some test case.

Another test criterion is “every branch” which

executes both sides of every decision by a test case.

In the “every path” testing criterion, a path is a

unique sequence of program nodes that are executed

by a test case. Since many programs with loops

have an infinite number of paths, every path testing

is not reasonable.

Data Flow Testing: This is testing based on the

flow of data through a program. It is clear that data

flows from where it is defined to where it is used.

Data definition occurs where a particular value is

assigned to a variable. There are two different data

definition uses, namely “definition-computation

use” and “definition-predicate use.” In a definition-

computation use, the variable appears on the right-

hand side of an assignment statement. In a

definition-predicate use, the variable is used in the

condition of a decision statement. A definition-

predicate use is assigned to both branches of the

decision statement.

A definition-free path is a path from a definition of a

variable to a use of that variable which does not

include another definition of the variable. One of

the data flow testing criteria is called definition-

computation use, which requires a definition-free

path from every definition to a computation use.

Another data flow testing is called definition-

predicate use, which requires a definition-free path

from every definition to a predicate use. One of the

most rigorous criteria is all definition use path

which requires all definition-free paths from every

definition to every possible use.

Random Testing: Random testing is accomplished

by randomly selecting the test cases. This approach

has the advantage of being faster than other testing

methods. Often the tests are selected randomly from

the operational profile. By drawing the test cases

from the operational profile, the tester will have

greater confidence that the behavior of the program

during testing is more predictive. If random testing

is done in this manner, then the behavior of the

software in testing should be the same as its

behavior in the operational environment.

4. SOFTWARE QUALITY ASSURANCES

Software Quality Assurance (SQA) is the planned

and systematic set of activities that ensures that

software conforms to requirements, standards, and

procedures. SQA includes the process of assuring

that standards and procedures are established and

followed throughout the software acquisition life

cycle.

Software development is a process of managing and

handling many risks. These risks can be both

technical and programmatic; risks that the software

will not perform as intended or will be too difficult

to operate, modify, or maintain are technical risks,

while risks that the project will overrun cost or

schedule are programmatic risks. The goal of

software assurance is to reduce many of these risks.

Establishing standards and procedures for software

development is critical. These provide the

framework from which the development and control

processes are compared. Proper documentation of

standards and procedures is necessary since the

SQA activities of process monitoring and product

evaluation rely upon unequivocal definitions to

measure project compliance.

Software Quality Assurance Activities: Product

evaluation and process monitoring are the SQA

activities that assure the software development is

described correctly, and that the project's procedures

and standards are followed. It is recommended that

the first products monitored by SQA should be those

standards and procedures. SQA assures that clear

standards exist and evaluates compliance of the

software product to the established standards.

Another SQA activity is process monitoring, which

ensures that appropriate steps to carry out the

process are being followed. SQA monitors

processes by comparing all of the actual steps

carried out with those in the documented

procedures.

A fundamental SQA technique is the audit, which

looks at a product in depth and evaluates it against

established procedures and standards. Audits are

used to review management and assurance processes

to provide an indication of the quality and status of

the software product. The purpose of an SQA audit

is to assure that proper control procedures are

followed and that the developer's status reports

accurately reflect the status of the activity.

Some of the more important relationships of SQA to

other management and assurance activities are

Configuration Management (CM), Verification and

Validation (VV), and Format Testing (FT). SQA

assures that CM activities are performed in

accordance with development plans, standards, and

procedures. The CM activities monitored and

audited by SQA include baseline control,

configuration identification, configuration control,

configuration status accounting, and configuration

authentication.

SQA assures Verification and Validation (V&V)

activities by monitoring technical reviews,

inspections, and walkthroughs. SQA also ensures

that all actions are assigned, documented, scheduled,

and updated. Technical reviews should be

conducted at the end of each phase of the life cycle

to identify problems and determine whether the

product meets all applicable requirements. In

technical reviews, actual work done is compared

with established standards to determine whether the

product is ready to proceed with the next phase of

development. An inspection or walkthrough is a

detailed examination of a product on a step-by-step

or line-by-line basis to find errors.

SQA assures that formal software testing, such as

acceptance testing, is done in accordance with plans

and procedures. It includes test plans, test

specifications, test procedures, and test reports. By

FT, SQA assures software is complete and ready for

delivery.

5. CONCLUSIONS

Software development is a process of dealing with

many risks. These risks can be both technical and

programmatic. The goal of software assurance is to

reduce many of these risks, especially for critical

systems such as medical or biomedical areas.

Although there are many tools and techniques

available to use for software testing, the best testing

requires a tester's creativity and experience. Testing

is not only used to locate defects but also correct

them. It is also used in the validation, verification

process, and reliability measurement of the

software. Testing should be an integral component

of the software process and it must be carried out

throughout the life cycle.

6. REFERENCES

[1] Beizer, Boris. Software Test Techniques. Second

Edition, International Thomson Computer Press,

1990.

[2] Black, Rex. Managing the Testing Process. Second

Edition, John Wiley and Sons, 2002.

[3] DeVolder, D. and Zadeh, J. Two-Discipline

Development. The 10
th

 World MultiConference on

Systemics, Cybernetics and Informatics. July,

2006. Orlando, FL.

[4] Fewster, Mark, and Graham, Dorothy. Software

Test Automation. Addison Wesley, 1999.

[5] Hetzel, W. The Complete Guide to Software

Testing, QED Information Systems, Wellesley,

MA, 1988.

[6] Kaner, Cem, Bach, James, and Pettichord, Bret:

Lessons Learned in Software Testing. A Context-

Driven Approach. John Wiley & Sons, 2001.

[7] Lieberma, H. and Fry, C. Will Software Ever

Work, Communication of the ACM 44, March

2001, pp. 122-124.

[8] Mallory, R. Steven. Software Development and

Quality Assurance for the Healthcare

Manufacturing Industries. Interpharm/CRC, 2001.

[9] McGraw, Gary. Software Security: Building

Security In. Addison-Wesley, Upper Saddle River,

NJ, 2006.

[10] Myers, J. Glenford. The Art of Software Testing.

John Wiley and Sons, 1979.

[11] Nguyen, Hung, Johnson, Robert, and Hackett,

Michael. Testing Applications on the Web (2nd

Edition): Test Planning for Mobile and Internet-

Based Systems.

[12] Robert V. Binder: Testing Object-Oriented

Systems: Objects, Patterns, and Tools. Addison-

Wesley Professional, 1999.

[13] Sykes, D. and McGregor. Practical Guide to

Testing Object Oriented Software, Addison

Wesley, Reading, MA, 2000.

[14] Zadeh, J. and DeVolder, D. Software Development

and Related Security Issues, IEEE –

SoutheastConf, 07. March, 2007. Richmond, VA.

