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Abstract

Hybrid parallel multicore architectures based on
Graphics Processing Units (GPUs) can provide tremen-
dous computing power. Current NVIDIA and AMD
Graphics Product Group hardware display a peak per-
formance of hundreds of gigaflops. However, exploiting
GPUs from existing applications is a difficult task that
requires non-portable rewriting of the code. In this pa-
per, we present HMPP, a Heterogenous Multicore Paral-
lel Programming workbench with compilers used to ac-
celerate a Reverse Time Migration (RTM) application in
a unintrusive manner while preserving the legacy code.

1 Introduction

Using Graphics Processing Units (GPUs) for scientific
computing is a recent and fast evolving trend [[1]. The
evolution has been so fast that the usual general-purpose
computing on graphics processing units (GPGPU) that
usually refers to programming vertex and fragment
shaders, is now obsolete.

Many phenomena have been at the origin of the use
of GPUs in scientific computing. The first one is the
evolution toward multicore architecture that doubles the
number of cores instead of doubling clock frequency

every 18 months. As a consequence, this has driven a
programming effort toward parallel programming and
has offered opportunities to hardware accelerator based
approaches. Performance of GPUs are about 750 times
higher than a decade ago.

The second one has been the introduction of pro-
grammable vertex and fragment shaders [4] that have
exposed a very high potential computing power to pro-
grammers outside the graphics area.

The third phenomenon is new programming lan-
guages like NVIDIA CUDA, Brook+ or soon OpenCL
that are based on a stream model more suited to scien-
tific programming than the obscure OpenGL or DirectX
standards used by GPGPU pioneers.

However, the main objective of these languages is
to expose some of the specifics of the stream architec-
ture in order to better exploit their performance. While
CUDA and Brook+ are vendor-specific programming
languages, the new OpenCL initiative aims at becoming
a programming standard for a large range of available
accelerators.

Based on compiler directives, HMPP (Heterogeneous
Multicore Parallel Programming) offers a higher level
of abstraction but still allows developers to fine tune the
programming of accelerators. HMPP provides develop-
ers with a heterogeneous C and Fortran compiler with



hardware-specific code generators that translate C and
Fortran functions in CUDA or SSE . Hardware-specific
codings are dissociated from the legacy code as addi-
tional software plugins. Contrary to applications that
have been specifically written for a target architecture,
HMPP produces applications that run on various hard-
ware platforms whether an accelerator is present or not.

The extraordinary challenge that the oil industry must
face for hydrocarbon exploration requires the develop-
ment of leading edge technologies to recover an accu-
rate representation of the sub surface. Over the last 20
years the industry has seen a fantastic leap in the abil-
ity to process seismic data and to build an increasingly
accurate image of the Earths structure. Seismic Depth
imaging and High Performance Computing are both key
components of this evolution.

Indeed the fast evolution of computers has enabled
the development of specialized algorithms allowing the
processing of increasingly large volumes of data gen-
erated by seismic acquisitions. Among these technolo-
gies, first arrival Kirchhoff, like integral methods has
difficulties in imaging complex geological structures
where multi pathing occurs. Downward-continuation
algorithms, based on one-way wave equation factoriza-
tion can only propagate partial information and cannot
image very complex geological structures.

RTM based on the full wave equation discretiza-
tion overcomes those limitations. Unfortunately, RTM
is highly compute intensive, more than the well-
established one-way wave equation methods. As such
RTM is a really good application candidate for GPU ac-
celeration.

The paper is organized as follows: section one de-
scribes the HMPP Workbench used to program and
build the accelerated version of the RTM application.
Section two emphases on the porting and optimization
of the RTM in order to fully exploit the GPU capabili-
ties. Section 3 reports performance results that we com-
pare against the native version of the RTM application.

2 HMPP Workbench

HMPP proposes a solution to not only simplify the use
of hardware accelerators (HWA) in conventional gen-
eral purpose applications but also to keep the applica-
tion code portable.

The goal is to integrate the use of HWAs rather than
porting the application to make use of them. The chosen
programming approach is similar to the widely avail-
able OpenMP standard but designed to handle HWAs.
The hardware-specific versions of the computations to
be offloaded to a HWA are dissociated from the native
application source code. As such, HMPP makes a pro-
gramming glue between hardware-specific codings and
standard programming languages.

Based on a set of directives, the HMPP Workbench
provides developers with C and Fortran compilers and
a runtime. It gives programmers a simple, flexible and
portable interface for developing parallel applications
whose critical computations are distributed, at runtime,
over the available heterogeneous cores.

2.1 Directives-based Programming
2.1.1 Codelet Concept

HMPP is based on the concept of codelets, functions
that can be remotely executed on a HWA.
A codelet has the following properties:

1. Itis a pure function.
2. Its return value is void.

3. It does not contain static or volatile vari-
able declaration.

4. The parameters are not vararg.
5. It is not recursive.

6. Its parameters are not aliased and can be copy-in
or copy-out.

7. It does not contain callsite directives (i.e. re-
mote procedure call to another codelet).

8. It does not contain any function calls such as li-
brary functions like malloc, printf, ...

Except for the aliasing property, all of these restric-
tions are checked by the HMPP compiler.

2.1.2 Directives for Declaring and Executing a
Codelet

The HMPP directives address the remote execution
(RPC) of a codelet as well as the data transfers to and
from the HWA memory if different from the host CPU
memory.

By default, all the parameters are loaded in the HWA
just before the RPC, and the main memory is updated
when the RPC has completed. More directives are pro-
vided to upload and download data to and from HWAs
before the remote execution of a codelet.

All the directives belonging to the declaration, exe-
cution, data transfers, etc. of a codelet are identified
by a unique label. Below is the most trivial way of ac-
celerating an application using only two directives: a
codelet directive to declare a function as a codelet,
and a callsite directive inserted before the function
call to specify the potential use of the codelet.

In the example Figure[T] the matvec function is de-
clared as a candidate for CUDA hardware acceleration.
HMPP generates the CUDA code from the C function.
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#pragma hmpp simple codelet,
static void matvec (int sn,

float *outv)

int i, j;
for (1 =0 ; 1i
float temp = outv[i];
for (J =0 ; J < sn; j++) |
temp += inv([j] * inm[i][
}

outv[i]

< sm ; i++) |

= temp;
}

int main(int argc, char xxargv)
int n;

#pragma hmpp simple callsite,
matvec(n, m, myinc, inm,

args[outv]
int sm,
float inv([sm],

jli

args [outv]
myoutv) ;

.io=inout, target=CUDA

float inm([sn] [sm],

.size={n}

Figure 1: codelet and callsite HMPP Directive Use Example.

The args parameter of the directive indicates that the
outv parameter is used as input and output. By default,
all parameters are input.

In this example, the device allocation, data upload,
codelet execution and result download are performed at
the call site. If the codelet is called in a loop, this leads
to overhead that might inhibit the performance offered
by HWA:s.

2.1.3 Data Transfers Directives to Optimize Com-
munication Overhead

When using a HWA, the main bottleneck is often the
data transfers between the HWA and the main proces-
sor. To limit the communication overhead, data trans-
fers can be overlapped with successive executions of the
same codelet by using the asynchronous property of the
HWA. For this, three directives can be used:

1. The allocate directive locks the HWA and al-
locates the needed amount of memory.

2. The advancedload directive prefetches data
before the remote execution of the codelet. More-
over, if the data variable is declared constant
(const qualifier in the directive parameter) then it
is loaded only once for all codelet executions and
reused as long as the HWA is not released.

3. The delegatedstore directive desacti-
vates the default download of results from the
callsite directive and explicitly transfers them
where the directive is inserted. This allows to
transfer data only once after multiple execution of
a codelet, in a loop for instance.

HMPP
source codelet

Main function

HMPP runtime

HMPP callbacks

preprocessor

j:

HMPP runtime

generator

Target codelet

Hardware vendor

‘HMPP codelet library

Figure 2: HMPP Compilation Flow.

It is therefore possible to perform device initializa-
tion, memory allocation and upload of input data only
once outside a loop and not each iteration. Results
can also be downloaded outside the loop using the
delegatedstore directive.

2.2 Compiling Hybrid Applications

In terms of use, the HMPP compiler workflow is really
close to traditional compilers with two main passes as il-
lustrated in Figure[2} one that builds a standalone appli-
cation running on the host processor and a second pass
for producing the accelerated versions of the codelets as
dynamic shared libraries.
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2.2.1 Host Application Compilation

As shown in the left part of Figure 2] the HMPP prepro-
cessor translates the directives into calls to the HMPP
runtime in charge of managing the execution of the
codelets. The preprocessed application is then compiled
using the generic host compiler. Note that the host ap-
plication can run standalone without hardware acceler-
ators.

2.2.2 Codelet Generation

The right part in Figure [2] illustrates the production of
the codelets as shared libraries in order to be loaded by
the HMPP runtime. The template generator produces
the codelet skeleton that contains all the runtime call-
back functions such as HWA allocation, data transfers,
etc. The developer can either write the codelet kernel
in the hardware programming language or let the target
generator translate the C or Fortran function in CUDA
or SSE. The codelet binary is finally produced using the
hardware-vendor compiler. More over, the codelet gen-
eration can be further improved with the use of codelet
generation directives.

2.3 Hybrid Application Execution

Hardware resources management is a critical issue that
is not tackled by current exploitation systems. Super-
computers have been avoiding this problem by running
only one application at a time or by partitioning the ma-
chine nodes. Unfortunately, programming and resource
allocation cannot be considered separately. Sharing a
GPU between applications, when it does work, usually
results in very poor performance due to context switch-
ing on the device.

Current available GPUs leave to the user the sharing
of a given device. This is fine when the nodes of an HPC
machine are partitioned among users running a single
application. However, in less controlled environments
(HPC workstations, laptops) this is an issue that has to
be addressed at run-time level.

The HMPP runtime handles the execution of codelets
for different and various hardware (GPUs, SIMD units,
FPGAs) but also for specific execution contexts. The
appropriate execution hardware is selected at runtime
depending on the system configuration, the resource
availability and data dependent conditions. If a hard-
ware accelerator is not present or not available, HMPP
runs the native codelet function on the host system in-
stead. If a codelet is attempting to run on a hardware,
let say GPU, that is locked by another codelet, HMPP
will execute it in the second GPU if there is one, then
in the second target the codelet has been declared for, if
any, or lastly in the host system otherwise.

3 Reverse Time Migration Accel-
eration

This section first gives an overview of the RTM al-
gorithm and then describes the porting of the acceler-
ated version using HMPP and the optimization that have
been applied to exploit the computation capabilities of
GPUs.

3.1 Overview of the Reverse Time Migra-
tion Computations

In RTM the two-way wave equation is solved for both
the source and receiver wave fields. This is followed by
an imaging condition, essentially a point-by-point mul-
tiplication of the receiver and source wave fields (i.e.,
zero-lag cross-correlation) which are summed over time
and over shot positions.

As described in Figur3] for every shot position the
general procedure consists in 3 different steps:

1. Forward sweep.
2. Backward sweep.
3. Imaging condition.

Steps 1 and 2 are based on the resolution of the full
wave equation. A shot is composed by the seismic
source and receivers, the forward sweep solves the full
wave equation from time t0 up to tmax with the seismic
source as second member term. The backward sweep
solves the full wave equation from time tmax down to
t0 with the receiver wave-field as second member. The
imaging condition is then applied to the forward back-
ward wave field at the same time ¢.

Because forward and backward sweep are solved in
opposite time direction we need to store the wave-field
during the forward sweep step. This stored wave-field
is read back during the backward sweep step in order
to provide the forward and backward wave-field at the
same time ¢ to the imaging condition.

By far the most computationally intensive component
of RTM is the code used for solving the wave equation.
We use an explicit finite difference procedure for the
3D equation in a heterogeneous medium. The proce-
dure is 2nd order accurate in time and 8th order accurate
in the spatial variables. Appropriate initial conditions
(for shot and receiver waves) are given, and absorbing
boundaries (or a free-boundary for the top surface) are
specified.

The RTM code can be parallelized at 3 levels:

1. Shot-receiver pairs handled in a data-parallel fash-
ion;

2. Overlapped domain decomposition in the physical
domain through MPI (Figure [));
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for each shot (s, ({ri},i=1,n))

1/ solve forward sweep and store wave-field

for each time step t=tO0 . tmax-1

Compute wavefield at time step t+l with s as second member

Store wavefield at time step t
end foreach
2/

for each time step t= tmax ... tl

solve backward sweep and apply imaging condition

Read wavefield at time step t
Compute image condition at time t
Compute wavefield at time step t-1 with
end for each
update global image

3/
end for

({ri},i=1,n) as second member

Figure 3: RTM Computation Steps.

Figure 4: Subdomain Decomposition. Each subdomain
is assigned to one CPU, ghosts nodes are exchanged us-
ing MPI message passing libraries.

3. Vector-parallel calculations of Laplacian, and
time-updates using a shared-memory paradigm.

The 3D version of RTM uses an overlapped domain
decomposition procedure, which distributes the simu-
lation grid for each shot and receiver across multiple
processors. Because each processor can operate on just
a portion of the total simulation grid, the amount of
memory, disk space, and computation per processor can
be greatly reduced. Processors exchange overlapping
zone or ghost nodes using the Message Passing Inter-
face (MPI). Asynchronous communication MPI send
and receive are used to load balance the computations
and the communications between sub-domains.

3.2 CUDA Acceleration with HMPP

The RTM Fortran application was already parallelized
with MPI in order to decompose one full data domain
in subdomains where the computations are distributed
over the different cores and nodes of a cluster machine.
The subdomain decomposition is indicated at applica-
tion launch to scale the RTM execution to the machine
configuration.

As shown in Figure[5] each subdomain defines a bor-
der of constant width where a mirroring condition is ap-
plied in the case of the blue border and where data are
sent from one subdomain to its adjacent subdomain in
the yellow border.

Mirroring effect

4

Y

Figure 5: RTM Domain Decomposition.

One main function that does all the computations of
one subdomain has been defined as a CUDA codelet
with the HMPP directives. The CUDA generator of
HMPP was not available at that time and the CUDA
codelets were directly written. Depending on its lo-
cation in the domain, the codelet performs the re-
quired subdomain computations in an NVIDIA GPU.
The codelet contains the forward and backward opera-
tions of the wave field propagation. It implements two
different variants: one that records the overall wave field
in the CPU each time stamp of the forward sweep and
another one that only records the wave field boundaries.
In that last case, the codelet re-computes the wave field
during the backward sweep while the wave field is sent
back from the CPU to the GPU in the record wave field
variant.

Two different codelets apply to the 2D and 3D ver-
sions of the RTM application. In the 3D case, the
number of data to process drastically increases. The
host to GPU transfers are even more expensive, in-
hibiting the acceleration gain we get in the 2D version.
A 100x100x100 3D subdomain exchanges a lot more
points than a 100x100 2D domain. This implies that for
the same data point of subdomain, more memory, non-
contiguous, accesses are performed.
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3.2.1 CUDA Kernels Optimizations

The objective of the CUDA kernel optimizations con-
sisted in reducing as much as possible the cost of
the GPU memory accesses. Different implementations
have been experimented. The first one makes a better
use of the different GPU memory types like textures
which are cached memory. The second one uses a sim-
ple 3D cache blocking in order to optimize data reuse.
But finally, the 3D technique has showed less effi-
ciency than a 2D cache blocking technique sliding on
the 3rd dimension. This approach allows for a larger
slice and consequently a better re-use of the data. Ta-
ble [T] reports the number of read accesses from GPU
memory per data point for each used technique.

RTM 2D 4

RTM 3D with texture 29
RTM 3D cache blocking 7.5
RTM 3D with sliding 2D cache | 4.1

Table 1: Number of Read Accesses per Data Point

3.2.2 Data Transfers Overlapping

While the CUDA kernel has been optimized to reduce
the number of memory accesses per data point compu-
tation, still data transfers between the host and the GPU
spending about 75% of the execution time need to be
optimized.

The strategies were fourth fold going from algorithm
changes to programming tricks and hardware improve-
ment. The latest NVIDIA Tesla server upgrades PCle
to 2.0. The memory bandwidth doubles from about
3 GB/s to 6 GB/s. The programming trick consisted in
exploiting the DMA-accessible pinned memory to im-
prove host to GPU data transfer speed.

Data transfers reduction has also been achieved by
offloading the mirroring condition computation in GPU,
adding more inexpensive computation to the GPU side
while removing partial data transfers. The last algo-
rithm optimization consisted in overlapping computa-
tions in the CUDA kernel with data transfers. The asyn-
chronous properties of the latest Tesla hardware has per-
mitted such optimization.

As shown in Figure [6] this technique consists in di-
viding each computation and transfer iterations in a
number of streams. Once the first computation stream
has executed, the second one is executed in parallel with
the first data transfer stream that preload data for the
third computation stream, and so on.

This technique has permitted to hide a large amount
of the data transfers. Execution time spent in tranferring
data fell from 32% to 15% in the forward pass using one
GPU and from 41% to 25% in the backward pass.

2uab
810d
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Figure 7: Accelerated Cluster Configuration.

4 Experiment Results

In this section, we report the performance achieved for
different domain sizes using one or two GPUs.

4.1 Machine Configuration

Figure [7] represents a two-nodes machine connected to
an NVIDIA Tesla S1070 server with four GPUs. The
host nodes are bi-socket quadcore with 2x16 GB mem-
ory running at 2.5GHz. The Tesla server is connected
using two PCle 2.0 links and each GPU has 4 GB mem-
ory. Performance peak is 4 TFlops Single Precision per
server and about 400 GFlops Double Precision.

4.2 Performance Results

Figure [§] gives the execution time of 3D versions of
RTM running different domain sizes. We compare four
different executions: two natives that uses one or two
nodes, i.e four or five CPUs, in parallel using MPI and
OpenMP, with GPU-accelerated versions using one or
two GPUs. The more number of elements the RTM ap-
plication processes, higher is the performance gain be-
tween the native version and the accelerated one.

We can notice that the accelerated version scales less
efficiently using one or two GPUs than the native ver-
sion running 4 to 8 CPUs. This is due to the extra cost
of the data transfers between the two GPUs that need to
go through the host server. Finally, if we compare the
GPU-accelerated version with the 8-cores, we achieve a
3.3 speedup.

The Figure [9] shows the scaling performance of the
RTM using up to 16 cores with GPU acceleration or not.
If we compare the sequential version running one CPU
(i.e one subdomain) against the same version but GPU-
accelerated, we get a 10x performance improvement.

Our latest experiments with a 3D modeling applica-
tion show that a machine with 8 NVIDIA Tesla servers
S1070 (32 GPUs) is equivalent to 4.4 CPU-only ma-
chines built with 512 Intel Hapertown cores at 3.0 GHz.
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Figure 6: CPU-GPU Kernel Execution and Data Transfers Overlapping.

This result illustrates how GPU-based servers can save
floor space and enery for large supercomputers.

5 Conclusion

GPU computing coupled with general-purpose multi-
cores are very cost-effective and promising high per-
formance heterogeneous hardware platforms. However
they represent today the perfect example of the dilemma
developers have to face. GPUs can provide a 10x and
more performance improvement but their programming
is still quite challenging.

HMPP addresses code portability as well as perfor-
mance on heterogeneous multicore platforms. As a
standard directive-based programming workbench, it
ensures code portability, offers a high level of abstrac-
tion for programming the GPUs and is open to fine tun-
ing GPU programming by either plugin written kernels
or library functions.

Main benefits of using HMPP in the RTM appli-
cation is the direct integration of CUDA hardware-
specific programming in Fortran without any C or C++
glue. HMPP offers an insulation between fast evolving
CUDA code and robust Fortran algorithm implementa-
tions.

We showed quite promising performance gain using
GPUs to accelerate the RTM. However, this has been at
the price of implementing CUDA kernels that make an
efficient, and quite complexe, use of the memory and
also at the price of searching for innovative techniques
in order to hide the data transfers and kernel execution.
For scientific applications, this requires the developer
to get a too much detailed knowledge of the hardware
architecture.

HMPP Workench has been enhanced with generators
that automatically translate C or Fortran codelet func-
tions in CUDA, thus hiding as much as possible hard-
ware details while still offering an open platform. Fu-
ture work can also be done in implementing real hybrid

computations that make use of both CPU and GPU at
the same time.
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