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ABSTRACT 
This study suggests a fuzzy anisotropic smoothing technique on 
scalar (grayscale) images using partial differential equations 
(PDEs) and fuzzy sets. This technique preserves the image 
details such as edges while noise is being reduced. The PDE and 
fuzzy rule based techniques are employed in approximation of 
smoothing coefficients calculated based on structure and 
noisiness information. Utilizing multiple tools constitutes the 
advantages of the proposed technique compared to the others. 
The results reveal that this technique can perfectly be used in 
denoising images in which fine details are definitely to be 
preserved during the smoothing operation. 
 
Keywords: Anisotropic Smoothing, Type I and Type II Fuzzy 
Sets, Structure Measure, Noisiness Measure.  
 

1. INTRODUCTION 
Recent image and video processing researches widespreadly 
employ PDEs and fuzzy sets. Some fundamental improvements 
in terms of inpainting, colorization, segmentation, registration, 
restoration and editing, have been achieved by employing PDEs 
and fuzzy logic techniques in image processing [1-13]. The 
experiments show that fuzzy sets and PDEs improve the 
performance and produce better results.  
 
PDEs based denoising techniques can be considered as non-
linear filters smoothing the image gradually by minimizing the 
image variations [1, 3]. In the literature there are quite number 
of techniques based on PDEs and fuzzy sets for denoising 
images [8-12]. Type I fuzzy sets were employed by Song et al. 
[8] and Aja et al. [9]. Besides, type II fuzzy sets were used by 
Puvanathasan et al. [10] for image denoising. Schulte et al. [11-
12] suggested detection and filtering methods based on type I 
fuzzy sets to reduce noise on images. 
 
This paper suggests a different algorithm based on fuzzy 
anisotropic smoothing approach. Unlike other methods using 
gradient information directly, the introduced algorithm employs 
the smoothed image structure and the noise distribution 
measures. This provides a flexible and robust way to reduce the 
noise on the scalar images. Although the approach suggested in 
[10] looks similar to the proposed algorithm, more precise 
image structure and noise distribution are employed in this 
work, and thus the generated results are better compared to 
those of previous ones.  
 
 

Isotropic smoothing  
Isotropic smoothing is a fine way to denoise the images [1]. All 
the restoration methods, starting from Tikhonov in [4] to the 
classical linear filtering of images, result similarly in terms of 
regularization behavior. The smoothing process is shown below: 
 
Let ܫ௡௢௜௦௬:Ω ՜ Թ be a noisy 2D scalar image to be denoised. 
There are three major noise types which are impulse noise, 
additive noise and multiplicative noise. Among these, additive 
noise model is an independent noise type that can be described 
by Gaussian distribution. Arising because of randomness 
superimposed on the image under process, Gaussian 
distribution is a very good example of the noise that occurs in 
many cases [11-12]. That is the reason why Gaussian noise is 
preferred for analyses in this study. This type of noise can be 
seen as high frequency variations ݊  with low magnitude in 
pixels of the original image [1]: 

௡௢௜௦௬ܫ  ൌ ௢௥௜௚௜௡௔௟ܫ ൅ ݊ (1) 

Denoising operation of ܫ௡௢௜௦௬  is to minimize the variations in 
the image. Eq. (2) is used for minimization operation on the 
image [4]: 
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As shown in Eq. (3), the image gradient denoted by ܫ׏ is the 
derivation of scalar image ܫ  with respect to its spatial 
coordinates ܘ ൌ ሺݔ,   : ሻݕ
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In order to represent magnitudes of the scalar image ܫ and its 
maximum variation directions, a vector ܫ׏:Ω ՜ Թଶ is created. 
Scalar and pointwise measure of the image variations are given 
by the gradient norm ԡܫ׏ԡ which is used in image analysis in 
many cases: 

 ԡܫ׏ԡ ൌ ටܫ௫ଶ ൅  ௬ଶ (4)ܫ

Finding the function ܫ minimizing the functional ܧሺܫሻ is not an 
easy task. Necessary condition is given by the Euler-Lagrange 
equations, which must be confirmed by ܫ to reach a minimum of 
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where ܨ ൌ ԡܫ׏ԡଶ ൌ ቆටܫ௫ଶ ൅ ௬ଶቇܫ
ଶ

. 

 
A classic iterative method called gradient descent is employed 
to solve PDE in Eq. (5). As a matter of fact, Eq. (5) can be seen 
as the gradient of the functional ܧሺܫሻ. A local minimizer ܫ௠௜௡ of 
 ଴ and then following theܫ ሻ  can be found by starting fromܫሺܧ
opposite direction of the gradient: 
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Eq. (7) is reached as the solution of Eq. (2): 

ܫ߲ 
ݐ߲ ൌ ௫௫ܫ ൅ ௬௬ܫ ൌ  (7) ܫ∆

where ∆  is Laplace operator. This kind of PDE is called a 
diffusion or heat equation. 
 
Basically, Eq. (7) at a particular time ݐ gives the convolution of 
௡௢௜௦௬ܫ  with a normalized 2D Gaussian kernel ܩఙ  of variance 
ߪ ൌ ݐ2√ : ௡௢௜௦௬ܫ  כ ఙܩ  means the linear smoothing where 

ఙܩ  ൌ
ଵ

ଶగఙమ
exp  ቀെ ௫మା௬మ

ଶఙమ
ቁ . 

As seen above clearly, during the PDE evaluation, the image is 
blurred gradually in an isotropic way. Here, isotropic smoothing 
acts as a low-pass filter suppressing high frequencies in the 
image ܫ. Unfortunately, since image edges and noises are both 
high frequency signals, the edges are quickly blurred by this 
operation (See Figure 1). Especially in image restoration, non-
linear and anisotropic smoothing methods should be found for a 
better result.  

 
Figure 1: Result of Heat equation method applied on 
Cameraman’s image which is artificially corrupted with 
additive Gaussian noise ሺߪ ൌ 20ሻ after 100 iterations.  

Anisotropic smoothing  
The limitations of linear methods leading to isotropic smoothing 
were eliminated by Perona and Malik [5] proposed a nonlinear 
form of the Eq. (7). This idea is derived from divergence form 
of equation as shown in Eq. (8). 

ܫ߲ 
ݐ߲ ൌ ܫ∆ ൌ divሺܫ׏ሻ (8) 

 
The smoothing process can be controlled more precisely by 
adding a function ݃ሺԡܫ׏ԡሻ delimited by ሾ0,1ሿ in the divergence 
form: 

ܫ߲ 
ݐ߲ ൌ divሺ݃ሺԡܫ׏ԡሻܫ׏ሻ (9) 

In order to stop the diffusion ݃:Թ ՜ Թ  is defined as a 
decreasing function vanishing on the edges (high gradients) for 
an anisotropic smoothing, and the function is close to 1 on 
homogenous areas (low gradients) for an isotropic smoothing. 
Perona-Malik proposed: 

 ݃ሺԡܫ׏ԡሻ ൌ expቆെ
ԡܫ׏ԡଶ

ଶܭ ቇ (10)  

where ܭ  is a threshold that helps differentiate homogeneous 
regions and edges. 
 
A decomposed form of this equation has been proposed in [1, 6] 
to see how exactly the PDE in Eq. (9) behaves: 

ܫ߲ 
ݐ߲ ൌ ܿξܫξξ ൅ ܿηܫηη (11)  

where ܿξ ൌ ݃ሺԡܫ׏ԡሻ and ܿη ൌ ݃′ሺԡܫ׏ԡሻԡܫ׏ԡ ൅ ݃ሺԡܫ׏ԡሻ. 
 
To give an example, using the proposed function in Eq. (10), the 
following results are found [1]: 
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ξξܫ  and ܫηη  are the second derivatives of ܫ  in orthogonal 
directions ξ and η, and can be seen as 1D oriented Laplacian: 

ξξܫ  ൌ
߲ଶܫ
߲ξଶ

ൌ ξ்۶ξ  (12)  

ηηܫ  ൌ
߲ଶܫ
߲ηଶ ൌ η்۶η (13)  

where ۶ is the Hessian matrix of ܫ: 

 ۶ ൌ ൬
௫௫ܫ ௫௬ܫ
௬௫ܫ ௬௬ܫ

൰ (14)  

Figure 2 depicts the unit vectors η and ξ  which are defined by 
the gradient direction and its orthogonal respectively: 
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The image is smoothed in the direction of the image contour ξ 
with a weight ܿξ, and in the direction of the gradient η with a 
weight ܿη  by  Eq. (11)  which indicates two coexistent and 
oriented 1D heat flows.  



 
Figure 2: η and ξ vectors at point ܘ ൌ ሺݔ,   .ሻݕ

 
In this context ൫ξ,η, ܿξ, ܿη൯ shows the local diffusion geometry 
of the Perona-Malik approach. When ܿξ ൒  ܿη , anisotropic 
smoothing is conducted while  preserving the image edges.  
 
The test results show that the PDE operation of Eq. (9) better 
preserve the image properties than Eq. (7). Unfortunately, there 
still seems to be little noises in the smoothed image. However, a 
negative coefficient  ܿη is resulted by the function ݃ proposed in 
Eq. (10), and inverse diffusion is sometimes produced as a 
consequence [1]. Inverse diffusion causes enhancements in 
image features. But it fails in an image with noise since the 
noise also becomes more evident as seen Figure 3. This is a 
drawback of the Perona-Malik method.  

 
Figure 3: Result of Perona-Malik method applied on 
Cameraman’s image which is artificially corrupted with 
additive Gaussian noise ሺߪ ൌ 20ሻ  after 100 iterations (The 
threshold value of the structure measure is chosen as 30). 

2. THE PROPOSED METHOD 
Fuzzy set theory is utilized in improving human understanding 
of the systems in terms of uncertainty and vagueness. The 
developed method based on the fuzzy sets theory enables us to 
minimize the effect of uncertainty in parameters used in 
anisotropic smoothing.  
 
As shown in [10], fuzzy anisotropic smoothing algorithm is 
composed of five steps. Here, the steps are explained only for 
smoothing coefficient ܿξ as follows. The steps can be adopted to 
explain another coefficient ܿη. 
 
Step 1: Image properties corresponding to linguistic labels are 
set. Fuzzy operation is performed on each property by using the 

proper membership function. The value of smoothing 
coefficient ܿξ  is set as the largest in homogenous and noisy 
regions and smallest at edges. Therefore, if the image structure 
is low and the noise degree is high then the smoothing operation 
must be applied at point ܘ  of the image and the coefficient 
should be set to a high value. Two linguistic variables can be 
defined according to image structure and noise degree, which 
are used in defining two fuzzy variables as the following: 
Structure measure: 

 ܵ ൌ ԡܫ׏ఙԡ ൌ ඥtraceሺ۵ఙሻ (17) 

 ۵ఙ ൌ ሺ்ܫ׏ܫ׏ሻ כ  ఙ (18)ܩ

where traceሺ۵ఙሻ stands for trace of the matrix ۵ఙ. 
 
 [11-12] defines the noisiness measure as a composition of two 
sub-parts both of which are used to define corrupted noisy 
pixels. 
 
The first part aims at determining whether the image pixel ܫሺܘሻ 
at point ܘ is a corrupted one or not. In order to understand this, 
a window of the dimension of  ሺ2݇ ൅ 1ሻ ൈ ሺ2݇ ൅ 1ሻ (݇ is set to 
1) centered around ܫሺܘሻ  is first checked.  Later, the mean 
differences ݊ଵ in this window are calculated as follows: 

 ݊ଵ ൌ
∑ ∑ ݔሺܫ| ൅ ݅, ݕ ൅ ݆ሻ െ ,ݔሺܫ ሻ|௞ݕ

௝ୀି௞
௞
௜ୀି௞

ሺ2݇ ൅ 1ሻଶ െ 1  (19) 

High ݊ଵ  values are generally resulted by corrupted pixels, 
because noisy pixels are normally relatively more eye catching 
compared to the pixels in their neighborhood. High values of ݊ଵ 
are also obtained in edge pixels. Therefore another value 
denoted as ݊ଶ is also calculated: 

 ݊ଶ ൌ
∑ ∑ ݊ଵሺݔ ൅ ݅, ݕ ൅ ݆ሻ௞

௝ୀି௞
௞
௜ୀି௞

ሺ2݇ ൅ 1ሻଶ
 (20) 

If both ݊ଵ  and ݊ଶ  are high values, the pixel is an edge pixel 
instead of noisy one. So when ݊ଵ and ݊ଶ values are close, it is 
thought that the pixel is noise free; otherwise, the pixel is a 
noisy one. The following fuzzy rule can be used in 
implementation of this approach: 
  
Fuzzy Rule 1: Define if a central pixel ܫሺܘሻ is corrupted with 
noise: 
IF ܰ ൌ |݊ଵ െ ݊ଶ| is high 
THEN the central pixel ܫሺܘሻ is a noisy pixel. 
 
Fuzzy Rule 1 is employed in calculation of the output of the 
first detection part by using the membership function ߤே. 
 
Similar to the first detection part, the degree showing that a 
certain pixel ܫሺܘሻ can be noisy is calculated for the second part. 
These parts complete each other to obtain a more robust 
detection method improving the global performance. 
 
A window of dimension of ሺ2݇ ൅ 1ሻ ൈ ሺ2݇ ൅ 1ሻ (݇ is set to 1) 
is chosen around ܫሺܘሻ . Eight neighbor pixels around ܫሺܘሻ 
correspond to different directions {North West (NW), North (N), 
North East (NE), East (E), South East (SE), South (S), South 
West (SW), West (W)}. The following equation is defining the 
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gradient value ܫܙ׏ሺܘሻ  of point ܘ  in direction ܦ , which is at 
point ܙ: 

ሻܘሺܫܙ׏  ൌ ܘሺܫ ൅ ሻܙ െ  ሻ (21)ܘሺܫ

where ܙ and ܘ are used for one of the eight directions and for 
the center of the gradient respectively. Two cases of high 
gradient values occur among the eight basic calculated 
gradients. The first case is when one of the two pixels is noisy. 
The other case is when there is an edge. As a consequence of 
this, two related gradient values should be used to detect only 
the first case. These two related gradient values defined in the 
same direction as the basic gradients, are determined by the 
centers making a right-angle with the direction of the 
corresponding basic gradient. Figure 4 depicts this for the S-
direction, i.e. for ܙ ൌ ሺ1,0ሻ . Basic gradient and two related 
gradient values at point ܘ are stated as ܫܙ׏ሺݔ, ,ݔሺܫܙ׏ ,ሻݕ ݕ െ 1ሻ 
and ܫܙ׏ሺݔ, ݕ ൅ 1ሻ, respectively. 
 

ܙ ൌ ሺ݅, ݆ሻ -1 0 1  
-1 NW N NE  
0 W ܘ ൌ ሺݔ,   ሻ Eݕ
1 SW S SE  
 Related Basic Related  

 
Figure 4: The centers used to calculate the related gradient 
values in S-direction. 
 
An overview of the involved gradient values in each direction is 
given in Table 1. 
 

Table 1: The gradient values to calculate the fuzzy gradient. 
 s׏ Related ׏ Basic ܦ

NW ׏ேௐܫሺܘሻ ׏ேௐܫሺݔ ൅ 1, ݕ െ 1ሻ ׏ேௐܫሺݔ െ 1, ݕ ൅ 1ሻ
N ׏ேܫሺܘሻ ׏ேܫሺݔ, ݕ െ 1ሻ ׏ேܫሺݔ, ݕ ൅ 1ሻ
NE ׏ோܫሺܘሻ ׏ோܫሺݔ െ 1, ݕ െ 1ሻ ׏ோܫሺݔ ൅ 1, ݕ ൅ 1ሻ
E ׏ாܫሺܘሻ ׏ாܫሺݔ െ 1, ݔሺܫா׏ ሻݕ ൅ 1, ሻݕ
SE ׏ௌாܫሺܘሻ ׏ௌாܫሺݔ െ 1, ݕ ൅ 1ሻ ׏ௌாܫሺݔ ൅ 1, ݕ െ 1ሻ
S ׏ௌܫሺܘሻ ׏ௌܫሺݔ, ݕ െ 1ሻ ׏ௌܫሺݔ, ݕ ൅ 1ሻ
SW ׏ௌௐܫሺܘሻ ׏ௌௐܫሺݔ െ 1, ݕ െ 1ሻ ׏ௌௐܫሺݔ ൅ 1, ݕ ൅ 1ሻ
W ׏ௐܫሺܘሻ ׏ௐܫሺݔ െ 1, ݔሺܫௐ׏ ሻݕ ൅ 1, ሻݕ
 
Finally, degrees ߬௡௢௜௦௘஽  and ߬௙௥௘௘஽  in the type I fuzzy set noise 
and in the type I fuzzy set noise-free for each direction ܦ are 
calculated. The Fuzzy Rules 2 and 3 are employed in 
calculating the degrees. 
 
Fuzzy Rule 2: Define if a central pixel ܫሺܘሻ is corrupted with 
noise for a certain direction ܦ: 
IF ( |ሻܘሺܫ஽׏|  is not high) AND ( ஽ᇱ׏| |ሻܘሺܫ  is high) AND 
(ห׏஽"  (ሻห is highܘሺܫ
OR  
IF (|׏஽ܫሺܘሻ| is high) AND [(|׏஽ᇱ "஽׏ሻ| is not high) OR หܘሺܫ  ሻหܘሺܫ
is not high)] 
THEN the central pixel ܫሺܘሻ is a noisy pixel in direction ܦ. 
 
Fuzzy Rule 3: Define if a central pixel ܫሺܘሻ is not corrupted 
with noise for a certain direction ܦ: 
IF (|׏஽ܫሺܘሻ| is high) AND (|׏஽ᇱ "஽׏ሻ| is high) AND หܘሺܫ  ሻห isܘሺܫ
high) 

OR  
IF (|׏஽ܫሺܘሻ| is not high) AND (|׏஽ᇱ  ሻ| is not high) ANDܘሺܫ
(ห׏஽"  (ሻห is not highܘሺܫ
THEN the central pixel ܫሺܘሻ is not a noisy pixel for a certain 
direction ܦ. 
 
In the above rules, ׏஽ܫሺܘሻ  , and ׏஽′ ሻܘሺܫ  and ׏஽" ሻܘሺܫ  denote 
basic gradient and two related gradient values, respectively. 
Conjunctions and disjunctions are contained in the rules. 
Triangular norms and co-norms are used to represent AND and 
OR operators in fuzzy logic. Here, the product and probabilistic 
sum are employed. Besides, the standard not operator   
notሺݔሻ ൌ 1 െ ݔ , with ݔ א ሾ0,1ሿ  is also used as negation. 
஽ᇱ׏|) AND (is not high |ܫ஽׏|)“ "஽׏is high) AND (ห |ܫ  ”(ห is highܫ
is calculated by using the product triangular norm as: 
ቀ1 െ ሻቁ|ܫ஽׏|௛௜௚௛ሺߤ · ቀߤ௛௜௚௛ሺ|׏஽ᇱ ሻቁ|ܫ · ቀߤ௛௜௚௛൫ห׏஽"  .ห൯ቁܫ
 
Figure 5 illustrates the type I fuzzy membership function ߤ௛௜௚௛. 
Optimal values for ܽ  and ܾ  parameters were found 
experimentally [11-12]. These parameters, formulated below, 
are optimal to distinguish noise and edges (contours). 

 ܽ ൌ
∑ ∑ |݊ଵሺݔ ൅ ݅, ݕ ൅ ݆ሻ െ ݊ଵሺݔ, ሻ|௞ݕ

௝ୀି௞
௞
௜ୀି௞

ሺ2݇ ൅ 1ሻଶ െ 1
ܾ ൌ 1.2ܽ

 (22) 

 

 
Figure 5: Type I fuzzy membership function ߤ௛௜௚௛. 

 
Eight membership degrees in the type I fuzzy set for noise and 
noise-free situations shape the output of the second detection 
method for the eight neighboring pixels of the current point ܘ. 
Fuzzy Rules 2 and 3 are used to calculate the degrees 
߬௡௢௜௦௘஽ ൫ܫሺܘሻ൯ and ߬௙௥௘௘஽ ൫ܫሺܘሻ൯, respectively. 
 
As shown in the following, both detection methods are 
combined to reset the noisiness measure ܰ more precisely: 

 ܰ ൌ ቐ
0 , if ෍ ߬௡௢௜௦௘஽ ൏

஽אሼே,ڮ,ௌሽ

෍ ߬௙௥௘௘஽

஽אሼே,ڮ,ௌሽ
not changed,   otherwise             

 (23) 

 
Structure measure ܵ is based on the smoothed gradient version 
of the image ܫሺܘሻ . [9-10] employed the standard deviation, 
which is calculated as the absolute of difference between the 
intensity of pixel and the average of its neighbor pixels, as a 
noisiness measure. However, this measure perceives some 
edges wrongly as noise in some cases as shown in Figure 6.b. 
Here, it should be stated that high noisiness measure at point ܘ 
shows a high noise degree. A normalization operation is applied 
on both structure and noisiness measures to set them between 0 
and 1. These fuzzy variables make use of two corresponding 

0 

1 
௛௜௚௛ߤ  

ሼ|׏஽ܫ|, ஽ᇱ׏| ,|ܫ  ሽ b a|ܫ஽ᇱᇱ׏|



type II fuzzy sets. These type II fuzzy sets, called ܵ and ܰ, are 
related to the low structure measure and high noisiness measure 
respectively. Type II membership functions are depicted in 
Figure 7. Here, Eq. (10) is employed to obtain the form of the 
membership functions. The upper and lower membership 
functions are determined based on the study of Tizhoosh [13]. 
As opposed to the gradient norm at noise, it should be bigger 
than the threshold ܭ  at edges. Upper and lower membership 
functions can be defined as follows: 

௎ߤ  ൌ ݃ଵ ఈ⁄  (24)  

௅ߤ  ൌ ݃ఈ (25)  

where ߙ א ሺ1,∞ሻ . In experiments, ߙ א   ሺ1,2ሿ  has been used 
because setting ߙ ب 2  is usually not significant for image 
processing [13]. 
 

Figure 6: Measures were obtained from Cameraman’s image 
corrupted with additive Gaussian noise ሺߪ ൌ 20ሻ : Proposed 
structure measure (a), noisiness measure presented in [9-10] (b), 
proposed noisiness measures of first (c) and second detection 
parts (d) for ݇ ൌ 1. 
 
Step 2: A knowledge-base composed of Fuzzy Rule 4 is created 
in the second step of smoothing algorithm. Consequently the 
following fuzzy rule is obtained: 
 
Fuzzy Rule 4: Define if ܿξ is a high value: 
 IF ܵ is low AND ܰ is high THEN ܿξ is a high value.  
 
This indicates that higher smoothing coefficient at point ܘ is 
required when structure value is low and noise level is high. 
 
Step 3: In order to meet the above rule the fuzzified inputs are 
combined. The following truth value is resulted by applying the 
product triangular norm to the fuzzy rule “ܵ  is a low value 
AND ܰ is a high value”: 

௎ߛ  ൌ ௎ௌߤ ሺܵሻ ·   ௎ேሺܰሻ (26)ߤ

௅ߛ  ൌ ௅ௌሺܵሻߤ ·   ௅ேሺܰሻ (27)ߤ

 
Figure 7: Type II fuzzy membership functions for the fuzzy 
variables that are “low structure” (a) and “high noisiness” (b) 
measures. 
 
Two consequences are obtained for the above rule, each of 
which corresponds to the upper and lower limit of membership 
function. The smoothing degree of pixel at point ܘ  is 
represented by these consequences. As a matter of fact 
activation degree of Fuzzy Rule 4 is represented by Eq. (26) and 
Eq. (27). This range of values ሺߛ௎, ௅ሻߛ  states the degree of 
membership in the fuzzy set “smoothing coefficient ܿξ is a high 
value”. If the range of values is close to 1, the smoothing 
coefficient ܿξ is also close to 1, which indicates the maximum 
smoothing. If the value is close to 0 the smoothing coefficient 
ܿξ is close to 0, which indicates no smoothing operation is to be 
done.  
 
Step 4: After obtaining the consequences from rules, they are 
combined to produce an output distribution range. This study 
does not apply the step 4 because it employs only the Fuzzy 
Rule 4.  
 
Step 5: The smoothing coefficient ܿξ  is obtained by type 
reducing and defuzzifying operation on output. In order to 
perform these operations, the average of the upper and the lower 
fuzziness values are used. Consequently, the smoothing 
coefficient ܿξ in type II fuzzy anisotropic smoothing is defined 
as: 

 ܿξ ൌ
௎ߛ ൅ ௅ߛ

2  (28)  

Therefore, the fuzzy based coefficients are used in the fuzzy 
anisotropic smoothing as follows: 
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ൌ ቐ
ܿξܫξξ ൅ ηη,   ݂݅ measureܫ ൐

ܭ
√2

ܿξܫξξ ൅ ܿηܫηη,         ݁ݏ݅ݓݎ݄݁ݐ݋
 (29)  

where measure stands for the structure and noisiness measures, 
and ܭ is the threshold for them. 
The denoising PDE shown in Eq. (28) is compatible with all 
properties expressed above: 

 ቐ
ሺ௧ୀ଴ሻܫ  ൌ                      ௡௢௜௦௬ܫ        

ሺ௧ାଵሻܫ ൌ ሺ௧ሻܫ ൅ ݐ݀
ሺ௧ሻܫ߲
ݐ߲        

 (30)  

where ݀ݐ stands for time step. 

3. EXPERIMENTAL RESULTS 
As seen in Figure 8.a-b, a synthetic Gaussian noise ሺߪ ൌ 20ሻ is 
added to the scalar Cameraman’s image with the dimension of 
256x256  for tests. The methods are also applied on an 
originally degraded image with the dimension of 342x259 as 
seen in Figure 9.a. The proposed method is compared with 
isotropic smoothing and anisotropic smoothing methods, which 
are the most popular PDE denoising methods used in smoothing 
images. The comparison of the proposed method is conducted 
with these basic methods since others are somewhat derivatives 
of these methods [1]. The threshold value of the structure 
measure is chosen as 200 for the anisotropic smoothing method, 
and threshold values of the structure and noisiness measures are 
chosen as 0.75 and 1.5 for the proposed method, respectively. 
 is ߙ is set to 3 for all methods used in image smoothing, and  ݐ݀
chosen as 2 for the proposed method. 
 
The denoised images generated by the proposed method and the 
previous ones are shown in Figure 8.c-e for 65 iterations. 
Additionally, the mean square error (MSE) and peak signal to 
noise ratio (PSNR) between the original and denoised images 
are displayed in Table 2. As can be seen in the table and 
denoised images, the best result is obtained by the proposed 
method. 
 
The smoothing results of original degraded image are shown in 
Figure 9.b-d for 50 iterations, which prove that the proposed 
method is presenting a better performance compared to the 
others. 
 
The methods were implemented in Microsoft Visual C++ 2005 
by employing CImg Library [14]. The program was run on a 
PC with Pentium 2.20 GHz processor and 2 GB RAM.  

4. CONCLUSION 
In this paper, a method based on fuzzy anisotropic smoothing is 
presented for denoising scalar images. This method reduces the 
noise while preserving the image properties such as fine details. 
As proved with experimental results, the performance and 
output of the proposed method are promising. The results 
present good visual quality and numerical measures. This 
method can be applied to color images as a future task. 
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Figure 8: Original Cameraman’s image (a), image corrupted 
with additive Gaussian noise (b), and isotropic smoothing 
method (c), anisotropic smoothing method (d) and proposed 
method (e). 
 

Table 2: MSE and PSNR results. 
Method MSE PSNR (dB) 

Isotropic smoothing 415.032 21.949 
Anisotropic smoothing 333.469 22.900 
Proposed 225.939 24.590 
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Figure 9: Original degraded image (a), isotropic smoothing 
method (b), anisotropic smoothing method (c) and proposed 
method (d). 
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