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ABSTRACT 

A brief survey of the recent experimental and theoretical 

results on the low threshold distributed feedback (DFB) 

lasing in chiral liquid crystals (CLC) and new original 

theoretical results on the localized optical modes in spiral 

media (edge (EM) and defect (DM) modes) are presented. 

Because the CLCs demonstrate common for all spiral media 

optical properties the studying of the problem is performed 

for the certianty for CLCs. 

Keywords:  Localized optical modes in spiral media, 

anomalous absorption, low threshold lasing  

1. INTRODUCTION 

    Recently there was a very intense activity in the field of 

localized optical modes, in particular, edge (EM) and defect 

(DM) modes in chiral liquid crystals (CLC) mainly due to the 

possibilities to reach a low lasing threshold for the mirrorless 

distributed feedback (DFB) lasing [1-4] in chiral liquid 

crystals. The EM and DM existing as a localized 

electromagnetic eigen state with its frequency close to the 

forbidden band gap or in the forbidden band gap, 

respectively, were investigated initially in the periodic 

dielectric structures [5]. The corresponding EM and DM in 

chiral liquid crystals, and more general in spiral media, are 

very similar to the defect modes in one-dimensional scalar 

periodic structures. They reveal abnormal reflection and 

transmission [1,2] and allow DFB lasing at a low lasing 

threshold [3]. The qualitative difference with the case of 

scalar periodic media consists in the polarization properties. 

The EM and DM  in chiral liquid crystals are associated with 

a circular polarization of the electromagnetic field eigen state 

of the chirality sense coinciding with the one of the chiral 

liquid crystal helix. There are two main types of defects in 

chiral liquid crystals studied up to now. One of them is a 

plane layer of some substance differing from CLC dividing in 

two parts a perfect cholesteric structure and being 

perpendicular to the helical axis of the cholesteric structure 

[1].  Other one is a jump of the cholesteric helix phase at 

some plane perpendicular to the helical axis (without 

insertion any substance at the location of this plane) [2]. 

Recently, a lot of new types of defect layer were studied [8-

14], for example, the CLC layer with the pitch differing from 

the pitch of two layers sandwiching the defect layer [8]. 

Almost all studies of the defect modes in chiral and scalar 

periodic media were performed by means of a numerical 

analysis with the excepting [15,16], where the known exact 

analytical expression for the eigen modes propagating along 

the helix axis [17,18] were used for a general studying of the 

defect mode associated with a jump of the helix phase. The 

used in [15,16] approach looks as a very fruitful one because 

it allows to reach easy understanding of the defect mode 

physics. In the present paper an analytical solutions of the 

EM and DM mode (associated with an insertion of an 

isotropic layer in the perfect cholesteric structure) are 

presented and some limiting cases simplifying the problem 

are considered.  

2. BOUNDARY PROBLEM 

      The boundary problem for a CLC layer was solved in 

many papers (for example [19-21]) so we give here only 

expressions for the amplitude transmission T and reflection R 

coefficients of light incident at a CLC layer of thickness L 

along the spiral axis. We assume that the CLC is represented 

by a planar layer with a spiral axis perpendicular to the layer 

surfaces. We also assume that the average CLC dielectric 

constant ε0 coincides with the dielectric constant of the 

ambient medium. This assumption practically prevents 

conversion of one circular polarization into another at layer 

surfaces [20,21] and allows taking into account only 

eigenwaves with diffracting circular polarization. The 

expressions for R and T take the form 

R = iδsinqL/{(qτ/κ2)cosqL +i[(τ/2κ)2+ (q/κ)2-1]sinqL}

                                                                                           (1)   

T=exp[iκL](qτ/κ2)/{(qτ/κ2)cosqL + 

                                          i[(τ/2κ)2+ (q/κ)2-1]sinqL},        (2) 

                                                                                             

where  q= κ{1+(τ/2κ)2  - [(τ/κ)2  + δ2 ]½}½ ,  ε0 =(ε||+ ε⊥)/2, δ
=(ε||- ε⊥)/( ε||+ ε⊥) is the dielectric anisotropy, and  ε||, and ε⊥

are the local principal values of the CLC dielectric tensor 

[16,17],  κ =ωε0
½/c, c is the speed of light,  τ is the  reciprocal 

lattice vector  of  the CLC spiral (τ=4π/p, where p is the 

cholesteric pitch).      
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Fig.1 Reflection coefficient R calculated versus the frequency 

for a nonabsorbing CLC layer (δ=0.05, N=L/p=250). Here 

and in all figures below, δ (ν−1) is plotted at the frequency 

axis (ν=2(ω-ωB)/(δωB) -1)). 

The example of intensity reflection coefficient calculation is 

presented at Fig.1. If both amplitudes of the incident waves 

are equal to zero, no waves emerging from the layer exist if 

the dielectric tensor has a positive (or a very small negative) 

imaginary part.  



 The calculations also show [23] that the values of the 

eigenwave amplitudes in the CLC layer excited by an 

incident light close to the stop-band edges are strongly 

oscillating functions of the frequency. At the points of 

maxima close to the stop-band edges their values are much 

larger than the incident wave amplitude. It turns out that the 

amplitude maxima frequencies coincide with the frequencies 

of zero reflection for a nonabsorbing CLC (see Fig.1 ). 

3. EDGE MODE (NONABSORBING LC) 

In a nonabsorbing CLC γ=0 in the general expression for the 

dielectric constant ε=ε0(1+iγ).  The calculations of the 

reflection R and transmission T coefficients as functions of 

the frequency (Fig.1) give the well-known results [17-21], in 

particular, T+R=1 for all frequencies.    

   The mentioned above relation between the amplitudes of 

eigenwaves and incident waves at the specific frequencies 

shows that the energy of radiation in the CLC at the layer 

thickness for these frequencies is much higher than the 

corresponding energy of the incident wave at the same 

thickness. Hence, in complete accordance with [22], we 

conclude that at the corresponding frequencies the incident 

wave excites some localized mode in the CLC. To find this 

localized mode, we have to solve homogeneous system 

corresponding to the inhomogeneous system describing 

reflection and transmission of light [23]. The solvability 

condition for this homogeneous system determines the 

discrete frequencies of these localized modes: 

                     tgqL= i(qτ/κ2)/[(τ/2κ)2+ (q/κ)2  - 1]       (3)          

0 50 100 150 200

COORDINATE

0

1

2

3

4

5

6

7

S
Q
U
E
R
E
D
F
I
E
L
D

Fig.2 The calculated EM energy (arbitrary units) distributions 

inside the CLC layer versus the coordinate (in the 

dimensionless units zτ) for the three first edge modes 

(δ=0.05, N=16.5, n=1,2,3). 

 In the general case, solutions of Eq.(3) for the EM 

frequencies ωEM can to be found only numerically. The EM 

frequencies ωEM turn out to be complex quantities, which can 

be presented as ωEM =ω0
EM(1+i∆), where ∆ is a small 

parameter in real situations. Fortunately, an analytic solution 

can be found for a sufficiently small ∆ ensuring the condition 

LImq<<1. In this case the ωEM is determined by the 

conditions  

qL=nπ and ∆=-½δ(nπ)2/(δLτ/4)3,        (4) 

where integer n is the EM number, which increases as the 

frequency  departs from-the stop band edge.  

The field intensity distributions in the layer for the EM 

numbers n = 1,2,3 are presented in Fig.2. The Fig.2 shows 

that the EM field is localized inside the CLC layer and its 

energy density experiences oscillations inside the layer with 

the number of the oscillations equal to the EM number n.   

However, the EM energy is leaking from the layer through its 

surfaces and EM life-time τm is finite for a finite layer 

thickness L. For sufficiently thick CLC layers the EM life-

time τm can be found analytically [23]: 

τm ≈ 1/Im(ωΕΜ) = (L/c)(δL/pn)2.            (5) 

4. ABSORBING LC

                                                                       

We assume for simplicity that the absorption in the LC is 

isotropic. We define the ratio of the imaginary part to the real 

part of the dielectric constant as γ, i.e., ε=ε0(1+iγ). In Fig.3 

the 1-R-T dependence on the frequency is presented for a 

positive γ. In an absorbing LC R+T<1. It occurs that for each 

n the maximum absorption, i.e., maximal 1-R-T, occurs for  

              (nπ)2 = (δLτ/4)3γ.                               (6) 

From the Eq.(6) follows that the maximum absorption occurs 

for a special relation between δ, γ, and L. Because of the 

assumed smallness of γ, this result corresponds to a strong 

enhancement of the absorption for weakly absorbing layers. 
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Fig.3 The absorption 1-R-T calculated versus the frequency 

(l=300, l=Lτ=4πΝ, δ=0.05) for γ=0.001. 

    As was shown in [20,24] just at the frequency values 

determined by (6), the effect of anomalously strong 

absorption reveals itself for an absorbing chiral LC (Fig.3).  

5. AMPLIFYING LC 

   We now assume that γ < 0, which means that the CLC is 

amplifying. If |γ| is sufficiently small, the waves emerging 

from the layer exist only in the presence of at least one 

external wave incident on the layer. In this case R+T>1 or 1-

R-T<0 what just corresponds to the definition of an 

amplifying medium.     

   However, if the imaginary part of the dielectric tensor, i.e. γ
reaches some critical negative value, the quantity R+T 

diverges (see Fig.4) and the amplitudes of waves emerging 

from the layer are nonzero even for zero amplitudes of the 

incident waves. The corresponding γ is the minimum 

threshold gain at which the lasing occurs. The equation 

determining the threshold gain (γ) coincides with Eq.(3). But, 

it must be solved now not for the frequency but for the 

imaginary part of the dielectric constant (γ).  
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Fig.4 R calculated versus the frequency (l=300, l=Lτ, δ=0.05) 

(top) close to the threshold gain for the first lasing edge mode 

(γ= -0.00565), (bottom) close to the threshold gain for the 

second lasing edge mode (γ=-0.0129); 

In the general case, this equation has to be solved 

numerically. However, for a very small negative imaginary 

part of the dielectric tensor the threshold values of the gain 

for the EM can be represented by analytic expressions in this 

limiting case. 

    For a very small |γ| and L|Imq|<<1 the threshold values of 

γ can be found in analytic form: 

γ=-δ(nπ)2/(δLτ/4)3                  (7) 

   It also follows from Fig.4: the different threshold values of 

γ correspond to the different edge lasing modes. This means 

that separate lasing modes can be excited by changing the 

gain (γ), i.e. the intensity of the pumping wave.  

6. BOUNDARY PROBLEM FOR DM 

The defect structure (DMS) which is under consideration here 

is shown at Fig.5. The solution of the boundary problem is 

carried out in the similar way as for a CLC layer above so we 

give below the final results (All simplifications accepted 

above for the CLC layer are accepted also for the DMS). 

CLC

CLC

d

Fig.5 Schematic of the CLC  DMS with an isotropic defect 

layer. 

There is an option to obtain formulas determining the optical 

properties of the structure depicted at Fig.5 via the solutions 

found for a single CLC layer [23]. If one use the expressions 

for the amplitude transmission T(L) and reflection R(L) 

coefficient (1) for a single cholesteric layer (see also [20,21]) 

the transmission │T(d,L)│2 and reflection │R(d,L)│2

intensity coefficients for the whole DMS may be presented in 

the following form:

│T(d,L)│2=│[TeTdexp(ikd)]/[1-exp(2ikd) RdRu]│
2,     (8)  

 R(d,L)│2=│{Re+Ru TeTuexp(2ikd)/ [1 

                                          -exp(2ikd) RdRu]}│
2,            (9) 

where Re(Te), Ru(Tu) and Rd(Td) are the amplitude reflection 

(transmission) coefficients of the CLC layers (1) (see Fig.5) 

for the light incidence at the outer (top) layer surface, for the 

light incidence at the inner top CLC layer surface from the 

inserted defect layer and for the light incidence at the inner 

bottom CLC layer surface from the inserted defect layer, 

respectively. It is assumed in the deriving of Eqs.(8,9) that the 

external beam is incident at the structure (Fig.5) from the 

above only.  

Fig.6 R(d) versus the frequency for a nonabsorbing CLC 

(γ=0) at d/p=0.1 (top) and  d/p=0.25 (bottom); δ=0.05, l=200, 

l=Lτ=2πΝ, where N is the director half-turn number at the 

CLC layer thickness L.  

The calculated reflection │R(d,L)│2 spectra inside the stop 

band for the structure sketched at Fig.5 for nonabsorbing 

CLC layers are presented at Fig.6. The figures show minima 

in │R(d,L)│2
 at some frequencies inside the stop band at 

positions which depend on the defect layer thickness d. As it 

is known [1-3,15,16], the corresponding frequencies of 

minima of │R(d,L)│2 and maxima of │T(d,L)│2  correspond 

to the defect mode frequencies. For the layer thickness d 

=p/4, what is just one half of the dielectric tensor period in a 

cholesteric, these maxima and minima are situated just at the 

stop band center. In the d/p interval 0<d/p<0.5 the defect 

mode frequency value moves from the high frequency stop 

band edge to the low frequency stop band edge. At Fig.6 only 



R(d) are presented because for a nonabsorbing structure 

│R(d,L)│2 +│T(d,L)│2 = 1.  

   

6. DEFECT MODE 

   Similarly to the case of EM the DM frequency ωD is 

determined by the zero value of the determinant Det(d,L) of 

the system corresponding to the boundary value solution for 

the structure depicted at Fig.5   [25] : 

Det(d,L)=4{exp(2ikd)sin2qL-exp(-iτL)[(τq/κ2)cosqL 

                                                                                                  

       +i((τ/2κ)2+(q/κ)2-1)sinqL]2 /δ2]}.               (10)                

Note, that the Det(d,L) at a finite length L does not  reach 

zero value for a real value of ω for a nonabsorbing CLC 

however reaches zero value for a complex value of ω. There 

is a leakage of the DM energy outwards through the external 

surfaces of the DMS. The ratio of the corresponding energy 

flow to the whole DM energy accumulated in the DMS 

determines the inverse DM life-time. 

 For nonabsorbing CLC layers the only source of decay is the 

energy leakage through their surfaces. The analysis of the 

corresponding expressions [25] shows that the DM lifetime 

τm is dependent on the position of  the DM frequency ωD

inside the stop band and reaches a maximum just at the 

middle of  the stop band , i.e. at k=τ/2.  

     

7. THICK CLC LAYERS 

In the case of DMS with thick CLC layers (|q|L>>1) some 

analytic results related to DM can be also obtained by the 

same way as for EM. In particular, the defect mode life time τ
reaches a maximum for the defect mode frequency at the stop 

band centre at fixed CLC layers thickness. For the DM 

frequency at the middle of the stoop band, i.e. at k=τ/2, one 

finds for the DM life time τm:                          

τm=[(1/8πδ2)(p/L)(Lε0
½/2c)(2δ2½+1)exp[2πδ2½ L/p]. 

The expression reveals an exponential increase of τm with 

increase of the CLC thickness L. 

8. ABSORBING LC 

  To take into account the absorption we again accept 

ε=ε0(1+iγ). There are some interesting peculiarities of the 

optical properties of DMS (Fig.5). The total absorption (1-

│T(d,L)│2- │R(d,L)│2 ) at the DM frequency (Fig.7)  

behaves itself  unusually.    

Fig.7 The total absorption for an absorbing CLC versus the 

frequency, γ=0.0003; d/p=0.1, δ=0.05, Ν=33. 

   At a small γ for the DM frequencies the absorption occurs 

to be much more than the absorption out of the stop band (see 

Fig.7). It is a manifestation of the so called “anomalously 

strong absorption effect” known for perfect CLC layers at the 

edge mode frequency [20,24]. So, one sees that at the DM 

frequency ωD the effect of anomalously strong absorption 

similar to the one for EM [20,24] exists and more over the 

absorption enhancement for DM at small γ is higher than for 

EM. In the case of thick CLC layers (|q|L>>1) the 

dependence of γ,  on L and other parameters ensuring 

maximal absorption may be found analytically. For the 

position of ωD just in the middle of the stop band the 

expression for γ ensuring maximal absorption takes the 

following form  

γ =[2(2½ )/3π]((p/δL) exp[-2πδ2½ (L/p)].             (11)      

9. AMPLIFYING LC 

The calculation results for the reflection │R(d,L)│2

coefficient at γ <0 are presented at Fig.8. For a small absolute 

value of  γ the  shape of the transmission T(d,L) and 

reflection │R(d,L)│2 coefficients is qualitatively the same as 

for zero amplification (γ =0). For a growing absolute value of  

γ  at some point a divergence of  │T(d,L)│2 and │R(d,L)│2

happens (Fig.8)) with no signs of noticeable maxima at other 

frequencies. The corresponding value of γ may be considered 

    
Fig.8 R(d) (top) for an amplifying CLC versus the frequency, 

γ=-0.00117; (bottom) γ=-0.0045 d/p=0.1, δ=0.05, Ν=33. 

as a close to the threshold value of the gain (γ) for the DFB 

lasing at the DM frequency. Continuing the increase of the 

absolute value of γ one finds that diverging maxima for 

│R(d,L)│2 at the edge mode frequencies appear (without no 

traces of maximum at the defect mode frequency) for the gain 

being approximately four time more than the threshold gain 

for the DM (Fig.8). The observed result show that the DM 

lasing thresholds gain is lower than the corresponding 

threshold for the EM. Another conclusion following from this 

study is the revealed existence of some interconnection 

between the LC parameters at the lasing threshold which for 

thick CLC layers was found above analytically for DM and 

for the EM. Really, a continuous increase of the gain results 

in consequential appearance of a lasing at new EM with 



disappearance of lasing at the previous ones corresponding to 

more low thresholds (what was experimentally observed [3]). 

The mention above interconnection between the LC 

parameters at the lasing threshold in the case of thick CLC 

layers (|q|L>>1) may be found analytically. If the DM 

frequency ωD is located at the stop band centre the 

corresponding interconnection for the threshold gain (γ) is 

given by the formula: 

 γ =−[2(2½ )/3π](p/δL) exp[-2πδ2½ (L/p)].        (12)   

                  

 The following from Eq.(12)  exponentially small value of |γ|
for thick CLC layers confirms mentioned above statement 

about more low lasing threshold for DM compared to EM.  

10. CONCLUSION 

    The performed in the previous sections analytical 

description of the EM and DM neglecting the polarization 

mixing at the boundaries of CLC in the structures under 

consideration allows one to reveal clear physical picture of 

these modes which is applicable to the defect modes in 

general. For example, more low lasing threshold and more 

strong absorption (under the conditions of anomalously 

strong absorption effect) at the DM frequency compared to 

the EM frequencies are the features of any periodic media. 

Note, that the experimental studies of the lasing threshold [3] 

agree with the corresponding theoretical result obtained 

above. Moreover, the experiment [3] confirms also the 

existence of some interconnection between the gain and other 

LC parameters at the threshold pumping energy for lasing at 

the DM and EM frequencies.   For a special choice of the 

parameters in the experiment the obtained formulas may be 

directly applied to the experiment. However, in the general 

case one has take into account a mutual transformation at the 

boundaries of the two circular polarizations of opposite sense. 

In the general case the EM and DM field leakage from the 

structure is determined as well by the finite CLC layer 

thickness so by the leakage due to the polarization 

conversion. Only for sufficiently thin CLC layers or in the 

case of the DM frequency being very close to the stop band 

frequency edges the main contribution to the frequency width 

of the EM and DM is due to the thickness effect and the 

developed above model may be directly  applied for the 

describing of the experimental data. The defect type 

considered above is a homogenous layer. The developed 

approach is applicable also to the defect of “phase jump” type 

[2,3,15,16] and so the corresponding results are practically 

the same as above. Namely, the equation related to the case of 

a “phase jump defect” one gets from the equations presented 

above by the substitution in the factor exp(2ikd) instead 2ikd 

the quantity 2∆ϕ, where ∆ϕ is the spiral phase jump  at the 

defect plane. It should be mentioned also that the localized 

DM and EM reveal themselves in an enhancement of some 

inelastic and nonlinear optical processes in photonic LCs. As 

examples the corresponding experimentally observed effects 

for the enhancement of nonlinear optical second harmonic 

generation [27] and lowering of the lasing threshold [28] in 

photonic LCs have to be mentioned along with the 

theoretically predicted enhancement of Cerenkov radiation 

(section 4 in [20] and chapter 5 in [21]). 

   In the conclusion should be stated that the results obtained 

here for the EM and DM (see also [25] and [26] for the EM) 

clarify the physics of these modes and manifests a complete 

agreement with the corresponding results of the previous 

investigations obtained by a numerical approach [22]. 
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