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Abstract

Many complex financial instruments with multiple
state variables have no analytical formulas and thus
must be priced by numerical methods like lattice. The
bivariate lattice is a numerical method that is widely
used to work with correlated state variables. Some
research has focused on bivariate lattices for models
with two state variables: stochastic underlying as-
set prices (e.g., stock prices) and stochastic interest
rates. However, when the interest rate model allows
rates to grow superpolynomially, the said lattices gen-
erate invalid transition probabilities. With the trino-
mial lattice and the mean-tracking techniques, this pa-
per presents the first bivariate lattice that guarantees
valid probabilities. It also proves that any bivariate
lattice for stock price and interest rate must grow su-
perpolynomially if the interest rate model allows rates
to grow superpolynomially.
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1 Introduction

The pricing of financial instruments with two or more
state variables has been intensively studied. The
added state variables to the underlying asset price can
be stochastic volatility [8, 11] or stochastic interest
rate [4, 14]. (The underlying asset will be assumed to
be stock for convenience.) Unfortunately, many com-
plex financial instruments with multiple state vari-
ables have no analytical formulas and thus must be
priced by numerical methods like lattice. This paper
presents a bivariate lattice method for models with

stochastic stock prices and stochastic interest rates.

In the traditional approach to valuing derivatives,
interest rates are often assumed to be constant. But
the values of interest rate-sensitive securities such as
callable bonds depend strongly on the interest rate,
which does not stay constant in the real world. Hence
it is critical for a general model to incorporate a
stochastic interest rate component.

A stochastic interest rate model performs two tasks.
First, it provides a stochastic process that defines fu-
ture term structures. A term structure defines bond
yields as a function of maturity. Second, the model
should be consistent with the observed term struc-
ture. There are two approaches on modeling inter-
est rates: the equilibrium model and the no-arbitrage
model. Equilibrium models usually start with the as-
sumption about economic variables and derive a pro-
cess for the risk-free rate. Two of the difficulties fac-
ing equilibrium models are that (1) they usually re-
quire the estimation of the market price of risk and
(2) they cannot fit the observed market term struc-
ture. Non-arbitrage models, in contrast, are designed
to be consistent with the market term structure [10].
This paper focuses on non-arbitrage lognormal inter-
est rate models, such as Black-Derman-Toy, Black-
Karasinski, and Dothan models [2, 3, 7]. This class
of interest rate models is assumed to follow the log-
normal interest rate process. In this paper, we adopt
Black-Derman-Toy (BDT) model, which is extensively
used by practitioners, to explain the main idea of our
bivariate lattice [1, 5, 13]. The popularity of lognor-
mal models arises from the fact that negative interest
rates are impossible.

Using the BDT model, Hung and Wang propose a



bivariate binomial lattice for pricing convertible bonds
[12]. A convertible bond entitles the holder to convert
it into stocks. The lattice’s size has a cubic growth
rate. Chambers and Lu extend Hung and Wang’s lat-
tice by adding the correlation between stock and in-
terest rate [6]. However, both approaches share the
same problem of invalid transition probabilities. This
is due to the fact that the BDT model allows the in-
terest rate to grow superpolynomially, which makes
the stock prices on the lattice with high interest rates
unable to match the desired moments with valid prob-
abilities.

This paper presents the first bivariate lattice for
stock and interest rate that guarantees valid transition
probabilities. Our bivariate lattice has two dimen-
sions: the stock price dimension and the interest rate
dimension. For the interest rate dimension, we con-
struct a binomial interest rate lattice under the BDT
model. We then develop a trinomial lattice for the
stock price dimension with the help of mean-tracking
techniques [16]. Furthermore, we prove that any bi-
variate lattice method (such as ours) for stock price
and interest rate must grow superpolynomially if (1)
the transition probabilities are guaranteed to be valid
and (2) the interest rate model allows rates to grow
superpolynomially such as the BDT model.

Our paper is organized as follows: The mathemat-
ical models are introduced in Section 2. We review
how to construct a binomial lattice and a BDT inter-
est rate lattice in Section 3. Section 3 also introduces
the invalid transition probability problem. Section 4
describes the methodology for our proposed bivari-
ate lattice. Section 5 proves the superpolynomial size
of any bivariate lattice method for stock and interest
rate if the interest rate model grows superpolynomi-
ally. Section 6 concludes the paper.

2 Modeling and Definitions

2.1 Continuous-Time Stock Price Dy-
namics

Define S; as the stock price at time t. The risk-
neutralized version of the stock price lognormal dif-
fusion process is

% =rdt + odz, (1)

where r is the risk-free rate, o is the volatility of the
stock price process, and the random variable dz is a
standard Brownian motion. Equation (1) has the so-
lution,

S, = Soe(rfO.SUQ)bHrz(t). (2)

2.2 The Stochastic Interest Rate
Model

In this paper, we use the Black-Derman-Toy (BDT)
model for the interest rate dimension (but the general
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Figure 1: The CRR Lattice. The initial stock price
is Sp. The upward and downward multiplicative fac-
tors for the stock price are u and d, respectively. The
transition probabilities are P, and P; =1 — P,.

conclusion applies to all lognormal interest rate mod-
els). In the BDT model, the short rate r follows the
stochastic process,

dlnr = 0(t)dt + o.(t)dz, (3)

where 0(t) is a function of time calibrated to ensure
that the model fits the market term structure, o, (t) is
a function of time and denotes the instantaneous stan-
dard deviation of the short rate, and dz is a standard
Brownian motion.

3 Preliminaries

3.1 The Binomial Lattice Model

A lattice partitions the time span from time 0 to time
T into n equal time steps and specifies the stock price
at each time step. The length of one time step At
thus equals T'/n. A 3-time-step Cox-Ross-Rubinstein
(CRR) binomial lattice is illustrated in Fig. 1. At
each time step, the stock price S can either make an
up move to become Su with probability P, or a down
move to become Sd with probability P; = 1—P,. The
relation

ud =1 (4)

is enforced by the CRR binomial lattice.
The mean (p) and variance Var of In(S¢4a¢/St) are
derived from Eq. (2) thus:

p = (r—050°) At, (5)
Var = o%At. (6)

By matching the mean and the variance of
In(Si+at/St), the four parameters P,, P;, u, and d
in the CRR lattice is

u=e"VAE (7)
d=e VA )
erAt —d
P, = , 9
— )
erAt —u
Py = . 10
= (10)
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Figure 2: The BDT Binomial Interest Rate Lat-
tice. The distribution converges to the lognormal dis-
tribution. The rates r1,75,73,74 are called baseline
rates.

The requirements 0 < P,, P; < 1 can be met by suit-
ably increasing n [15]. Moreover, the lattice converges
to the continuous-time model as n increases. We re-
mark that our results can generalize to any lattice with
equal time step.

3.2 The BDT Binomial Interest Rate
Lattice

An array of yields of zero-coupon bonds for numerous
maturities and an array of short-rate volatilities for
the same bonds are the input of the BDT model. From
the term structure of yields, a procedure called cali-
bration constructs a binomial lattice consistent with
the term structure (see Fig. 2). In general, there are
7 possible rates in period j:

2 j—1
TjaTjUf TV, T (11)
where
v; = e2IVAL (12)

is the multiplicative ratio for the rates in period j, r; is
called baseline rates, and o; is the annualized short-
rate volatility in period j. The subscript j in o; is
meant to emphasize that the short rate volatility may
be time dependent. Each branch has a 50% chance
of occurring in a risk-neutralized economy (i.e., the
probability for each branch is 1/2).

3.3 The Invalid Transition Probability
Problem

A few bivariate binomial lattices for pricing convert-
ible bonds with the BDT interest rate model for the
interest rate component have been proposed [6, 12]. If
there is no correlation between the stock and interest
rate, the transition probabilities for the stock price
dimension are P, and P, given the prevailing inter-
est rate r (recall Egs. (9) and (10)). The no-arbitrage
requirements 0 < P,, P; < 1 is equivalent to

d< e <u. (13)

a+ 20/At

Figure 3: The Trinomial Lattice. The stock price
can move from node X to node A with probability P,,
node B with probability P,,, and node C with prob-
ability Py. Above, u denotes the mean of the s(X)-
log-price of Si1ar (recall Eq. (5)). In(s(X)/s(X)) =
and In(s(B)/s(X)), In(s(A4)/s(X), and In(s(C)/s(X))
are i, i + 20V/At, and [i — 20V/At, respectively. The
numbers 3, a, and v are defined in Eqgs. (17)—(19).
The length of the time step for the trinomial lattice is
At.

In the above relations, v and d are independent of the
prevailing interest rate r (recall Egs. (7) and (8)). As
the prevailing interest rate in the BDT model grows
superpolynomially (which will be proved in Section
5), eventually inequalities (13) will break. When this
happens, the probabilities generated by the CRR lat-
tice will lie outside [0, 1].

On the other hand, suppose the correlation (p) be-
tween the stock price and interest rate is not zero. The
transition probabilities for the stock price dimension
will become P, = p+ /p(1 —p)p and P; =1 — P,,
where p = (e"*—d)/(u—d). Obviously, the transition
probabilities will be complex numbers if inequalities
(13) do not hold.

4 Bivariate Lattice Construc-
tion

Our bivariate lattice has two dimensions: the stock
price dimension and the interest rate dimension. For
the stock price dimension, the foundation of our lattice
is the CRR lattice mentioned in Section 3.1. To solve
the invalid transition probability problem mentioned
in Section 3.3, we use trinomial lattices to track the
mean of the stock price.

Let the stock price of node Z be s(Z) for conve-
nience. Define the S-log-price of the stock price S’ as
In(S’/S) and the log-distance between stock prices S
and S" as |In(S) — In(S")|. Given a node X at time ¢
and nodes at time ¢ + At. (The log-distance between
two adjacent nodes at time t + At is 20v/At, which
is the same as the CRR lattice). The mean (p) and
variance (Var) of the s(X)-log-price of S¢ia: can be
obtained from Egs. (5) and (6), respectively.

In Fig. 3, the node B whose s(X)-log-price (f1) is
closest to u among all the nodes at time ¢t + At will be
the destination of the middle branch of the trinomial
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Figure 4: The Concept of a Two-Dimensional
Lattice. The node X at time step ¢ has six branches
tonodes A, B, C, D, E, and F at time step ¢t +1. Let
Si; denote the jth nodes at time step i. The stock
price and the short rate at X are S;, and rt+1vf+1,
respectively. The stock price at nodes A and D is
S(t+1)y, that at nodes C' and E is S(;41)(y+1), and
that at nodes D and F is S y1)(y+2)- The interest
rate at node A, B, C is THQUf_f_r; (upward), and that
at nodes D, E, Fis rt+gvf+2 (downward).

lattice (this is called meaning tracking). Note that
the s(X)-log-price of the central node B will lie in the
interval (p — oV/At, i+ ov/At] [16]. We then select
two nodes A and C, which are adjacent to node B,
and three transition probabilities P,, P,,, and Py for
the node X can be obtained by matching the mean
and variance of the s(X)-log-price of Siya¢.

The transition probabilities for the node X (i.e., Py,
P,,, Py) can be derived by solving the following three
equalities:

Pu(a)? + P (B)* + Py(7)* = Var, (15)
P, +Pn+P = 1, (16)
where
ﬁ = L — 1y (17)
o = Q+20VAt—p=F+20VAL  (18)
v o= f—20VAt—p=p3-20VAt, (19)
o= In(s(B)/s(X)). (20)

(Note that —ov/At < 8 < ov/At.) The above proce-
dure will yield valid probabilities [16].

For the interest rate dimension, we first construct a
binomial lattice for the BDT model. The idea of our
bivariate lattice is illustrated in Fig. 4. The node X
at time ¢ has 6 branches, to nodes A, B, C, D, E,
and F' at time ¢t + At. Let S;; denote the jth nodes
at time step 7. Assume that the stock price and the
short rate at X are S;, and rt+1ﬂf+l, respectively.
The stock price at nodes A and D is Sy41),, that
at nodes C' and E is S(;41)(y+1), and that at nodes
D and F is Sgq1)(y+2)- The interest rate at node

A, B, Cis rt+gvfrzl (upward), and that at nodes D,
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Figure 5: The Size of the Bivariate Lattice. The
log-distance between two adjacent nodes is 20v/At.
S;; denotes the jth nodes at time ¢, and po = (rhvy —
0.50%)At = rovy — 0.50%At (recall Eq. (5)), where 77
denotes the annualized baseline rate.

E, F is ry4ovf,, (downward). In the above lattice
construction, we simply assume that the interest rate
process and the stock price process are independent,
so the joint probabilities for the six branches can be
obtained by multiplying the transition probabilities
of the BDT binomial lattice (i.e., 1/2) and the trino-
mial lattice (i.e., P,, Pp,, and P;). If the correlation
between two processes are not zero, the joint proba-
bilities can be obtain by using the orthogonalization
technique [9].

5 Complexity of the Bivariate
Lattice

The size of the proposed bivariate lattice is proved
in this section. Figure 5 gives a three-period bi-
variate lattice as an example and illustrates the con-
cept of the bivariate lattice. In the figure, ps =
(rhve — 0.502) At = rovy — 0.502At (see Eq. (5)) and

—aVAt < B < oVAL. (21)

(Note that 7 denotes the annualized baseline rates.)
To investigate the complexity of the size of the bivari-
ate lattice, we prove that the node count at each time
grows superpolynomially as n goes to infinity.



We fix the maturity 7" = 1 for simplicity. Let d(¢)
denote the number of nodes in the stock price dimen-
sion at time step ¢ and p; denote the log-mean of
the stock price at time j with the blggest interest
rate at time j — 1 (ie., p; = rjuj~ — 0.502/n =
Tj@Q(j’l)"j/\/ﬁ —0.50%/n) for j =1,2,--- ,n+1. Fig-
ure 5 shows that d(0) =1, d(1) = 3, and

u2+ﬂ+2aﬁ*0ﬁ.

d(2) =d(1
(2) = d(1) =
By the fact — f < p < a\f by inequalities (21),
we know that
d(1)+1+ <d2)<d1)+1+— +1

By induction, d(I+1) satisfies the following recurrence
relation:

041 (41
+£+Z < d(€+1) < d(1)
f j= 32 \/ﬁ
(22)
Consequently, the total node count in the stock price
dimension is

n+1

> d(). (23)
j=0

From Egs. (22) and (23), we know that any bivariate
lattice method for stock and interest rate must grow
superpolynomially if the interest rate (or u;) grows
superpolynomially (, to which we turn below).

Next, we prove that the growth rate of u; is su-
perpolynomial in the BDT model. We first prove the
superpolynomial growth rate of the biggest interest
rate at time j — 1, rjvg_l = rjeQ(]_l)””ﬁ. Let f;
denote the forward rate in period j. Build a binomial
interest rate lattice with the baseline rates 7} set by

* 2 -t
i () & 1)

Theorem 5.1 The binomial interest rate lattice con-
structed with Eq. (24) overestimates the prices of the
benchmark securities in the presence of wvolatilities.
The conclusion is independent of whether the volatility
structure is matched.

Proof: The details of the proof is presented in [15] . ®m

Theorem 5.2 The binomial interest rate lattice con-
structed with Eq. (24) by using the forward rate v; f;
instead of f; underestimates the prices of the bench-
mark securities in the presence of volatilities. The
conclusion is independent of whether the wvolatility
structure is matched.

Proof: The details of the proof are available from the
authors upon request. [ ]
According to Theorems 5.1 and 5.2, we have

Ty <1y <rjvj. (25)

Then
rjvj:_l < rivj (26)
2\
= 27
(7) o4 e
211j g1
= 28
(1+vj> fivjs (28)
r]vg_l > r;vg_l (29)
2\t
J—1
= 30
(1_'_1]]) f]vj ( )
21}j i1
(%) + (31)
Let

; 20541 J 2e279+1 7w J
A(n»]) = <1+> = T . (32)
Uj+1 14 29917
Because 1 + €29i+1/V > 2,

Ang) < | =—5—) =5 @39)

Therefore, A(n, j) = ¢?W/v™)_ On the other hand, for
n sufficiently large, 2 x 22"J+1\/Z > 14 e20it V. So

2 20]*1% J 20,41 =
Amgz | ————F) =(5) 7. 69
T 2 x 22V 2

As a result, A(n,j) = (e/2)?0/V™) for n sufficiently
large.

According to Egs. (26), (29), (33), and (34), as n
goes to infinity, the upper and lower bounds of r; g !
are

A(n,j—1)v; <r; j V< A(n,j — 1) fjv;, (35)
From inequalities (35), we know that r;v; v/ grows
superpolynomially, and equuvaulently7 1y grows super-
polynomially (recall p; = rjvj~" — 0. 502 /n). There-

fore, the size of the bivariate lattlce must grow super-
polynomially in the BDT model.

6 Conclusions

This paper presents the first bivariate lattice method
to solve the invalid transition probability problem by
using the trinomial lattice and mean-tracking tech-
niques. Furthermore, we prove that any bivariate lat-
tice method for stock price and interest rate must grow
superpolynomially if (1) the transition probabilities
are guaranteed to be valid and (2) the interest rate
model allows rates to grow superpolynomially such as
the BDT model.
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