
A Proposal of Substitute for Base85/64 – Base91

Dake He

School of Information Science & Technology, Southwest Jiaotong University, Chengdu 610031,China
College of Informatics, South China Agricultural University, Guangzhou 510642, China

dkhe_scce@swjtu.cn

Yu Sun, Zhen Jia, Xiuying Yu, Wei Guo, Wei He, Chao Qi

School of Information Science & Technology, Southwest Jiaotong University, Chengdu 610031,China

Xianhui Lu

Key Lab. of Information Security, Chinese Academy of Sciences, Beijing 100039,China

ABSTRACT

The coding transformation method, called Base91, is

characterized by its output of 91 printable ASCII

characters. Base91 has a higher encoding efficiency than

Base85/64, and higher encoding rate than Base85.

Besides, Base91 provides compatibility with any

bit-length input sequence without additional filling

declaration except for his codeword self. One can use

Base91 as a substitute for Base85 and Base64 to get some

benefits in restricted situations.

Keywords: Base91; Base85; Base64; printable ASCII

characters; IPv6

1. BACKGROUND OF INVENTION

With the rapid development of Internet and its business

application, unambiguous and unaffected transmission by

net equipment has become more and more important. As

all know that a net transmission using some of 95

printable ASCII characters, include space character, has

this safe specific feature.

For example, unambiguous and unaffected transmis-

sion by net equipment is necessary for encrypting system

(as PGP for Pretty Good Privacy) and E-mail. All the

SMTP(Simple Mail Transfer Protocol)-based E-mail can

provide compatibility with the E-mail. So-called

compatibility with the E-mail is to transform arbitrary

8-bit data byte-strings or arbitrary bit stream data

transferred by the E-mail into a character-strings of a

limited ASCII (American Standard Code for Information

Interchange). The main limitation on the latter is that: (a)

the characters have to be printable; (b) the characters are

not control character or “-”(hyphen). There are totally 94

of such ASCII characters, their corresponding digital

coding being all integers ranging from 32 through 126

with the exception of 45. E-mail written in these ASCII

characters is compatible with the Internet standard SMTP,

and can be transferred in nearly all the E-mail systems.

Nowadays, as Content-Transfer-Encoding to provide

compatibility with the E-mail, Base64[1,2] code is usually

employed.

Base64 coding divides the input sequence into blocks

being 6-bits long to be used as variable implementation

mapping, the mapping is denoted by

Base64[]: X →Y

where the variable or original image set X includes all 64

6-bits long symbols (denoted as integers 0, 1,…, 63) and

Φ representing “no data” or empty , the image set Y

includes the upper and lower cases of 26 alphabetic

characters, Arabic digits ranging from 0 through 9, “+”,

“/” and filling character “=”, where it is specified that in

the non-program statements the Chinese quotation marks

(“”) are used as the delimiter of characters or character-

strings (the following is same). Mapping rules commonly

used in Base64 coding software are

Base64[0]=“A”,…,Base64[25]=“Z”,Base64[26]=“a”,

…,Base64[51]=“z”,Base64[52]=“0”,..,Base64[61]=“9”,

Base64[62]=“+”, Base64[63]=“/”

Particularly, Base64[Φ]=“=” is used only when needed

so as to make the total number of characters of output

string equal to the multiples of 4. The coding efficiency

of Base64 coding is 6/8 = 75%. The data expansion rate

is 8/6 = 4/3 = 133.333%.

Another unambiguous and unaffected transmission by

net equipment is Base85[3]. Base85 (also called

mailto:dkhe_scce@swjtu.cn

"ASCII85") is a form of binary-to-text encoding

developed by Paul E. Rutter for the btoa utility. By using

five printable ASCII characters to represent four bytes of

binary data, so the encoding efficiency of Base85 is 4/5

or 80%. The data expansion rate is 5/4 = 125%. Because

always depending on modulo-85 division of four bytes,

Base85 encoding rate is lower than Base64. Main modern

use of Base85 is in Adobe's PostScript and Portable

Document Format file formats, and in the compact

representation of IPv6 addresses being 128-bits long.

2. BASE91 CODE

The aim of designing Base91 coding[5,6] is to provide a

new digital data coding method as substitute of Base85 or

Base64, so as to get higher coding efficiency under the

condition of E-mail compatibility, or more generally, of

realizing the unambiguous and unaffected transmission

by Internet equipment.

2.1 Base91 encoding

The main idea of Base91 is the new block design: to

divide the input data sequence into blocks of 13-bits long,

and to encode one block as two printable ASCII

characters of Base91. Why 91? Because

 90×90 < 213(=8192) < 91×91 (=8281),

so 91 is the best choice of basis or radix number in this

case. Base91 encoding mapping is denoted by

Base91[]: X →Y

where the variable or original image set X includes all

8192 13-bits symbols (denoted as integers 0,1,…,8191)

and symbols φn=8191+n (n=1,…,12) being filling data

declaration denoting the n-bit data at the specified side of

the last block are filling data, thereby making the total

number of elements in the original image set equal to

8204; the image set Y is the sub-set of the direct product

of R91×R91, where the symbol R91 denotes the set of 91

characters selected from the 95 printable ASCII character

set with “-”, “=”, “.” and space characters excluded, the

direct product R91×R91 has 8281 elements. So, the

remained 77 elements of Y may be used to extend Base91

for the future.

Base91 is defined as an injective mapping arbitrarily

selected from X into the direct product R91×R91. For the

convenience of implementation, assuming that

R91_ch[91] is the character array that includes all R91

characters and is arranged according to the ASCII

sequential order, we preferably selects the following

mapping:

Base91[x] = (ch1, ch2)

= (R91_ch[x/91] , R91_ch[x%91]) (1)

where x X, ch1,ch2 R91, symbols “/” and “%” are the ∈ ∈

operators used in the C language, representing integral

division and modulo division (remainder) respectively.

The operation of dividing the input message into 13-bits

long blocks may produce the last block less than 13-bits

long. For such block, n bits are added to the specified side

to make it become a complete block for encoding

mapping, and a block of data φn is added thereafter as the

input data implementing mapping so that it can be

decided how many filling bits have to be deleted during

decoding. When needed, double-character “= =” may be

used as a “terminating symbol” of the output character

string. Hence at most 92 printable ASCII characters can

appear in the output-string of Base91 encoding.

According to the encoding rules of the above-

mentioned Base91, the number of extra added output data

consisting of the filling bits, the image of the filling data

declaration φn and the “terminating symbol” does not

exceed 6 characters. Therefore, with the increase of the

length of input data sequences, the encoding efficiency of

Base91 approaches 81.25%, its data expansion rate

approaches 123.077%.

Compared with the Base64 or Base85, the Base91 has

its advantage in encoding efficiency. The design features

of the three coding schemes are shown in table 1.

Table 1 design features of three code schemes

 Code scheme
Features Base64 Base85 Base91

basic characters in output 64 85 91

encoded bits in output B 6 6.4 6.5

input bits (one block) 6 32 13

output bits (one block) 8 40 16

encoding efficiency 75% 80% 81.25%

data expansion rate 133.333% 125% 123.077%

codeword for filling bits 0 0 12

2.2 Implementation of Base91 encoding

There is some technique to speed up encoding of

Base64 and Base91. But the technique of lookup

KB-table cannot be used to Base85. Noting that Base85

encoding mapping may denoted by

Base85[x] = (ch1, ch2, ch3, ch4, ch5)

for (i=5;i>0;i--){chi = R85_ch[x%85]; x= x/85;} (2)

where x is a 32-bits input, chi R85, and R85_ch[85] is ∈

the character array that includes all R85 characters and is

arranged according to the ASCII sequential order,

symbols “/” and “%” are the operators used in the C

language, representing integral division and modulo

division (remainder) respectively. Because the block

being 32 bits and the divisor being 85, Base85 has to

repeatedly employ normal integer division of 32 bits long

words. In contrast with Base85, the operators “/” and “%”

only rely on 16 bits words in normal encoding

transformation of Base91.

So, at any case Base91 always has a higher encoding

rate than Base85. Using normal encoding transformation

of operators “/” and “%”, Base91 has much lower

encoding rate than Base64. If using lookup KB-table

technique to speed up, then two encoding rates of Base64

and Base91 are similar, but the table for Base91 is bigger

than Base64.

Table 2 40MB encoding time//rate of Base64/91/85

Code scheme Base64 Base91 Base85

Intel Celeron 330, 2.66GHz, L1 data 16KB with MMX,
SSE, SSE2,SSE3, Compiled C

Alg. without lookup
KB’s table

161318
//

248MB/s

359262
//

111MB/S

812440
//

49.3MB/s
Alg. with lookup
KB-table ignore
tab. loading time

 90784
(not opt.)//
440MB/s

 84214
//

474MB/s

Intel Celeron 2.5GHz Compiled C : GCC [4]

Alg. with 6KB~
8096B lookup table

//306MB/s
:

453MB/s

IBMX40 P M738, 1.40GHz, L1 data 32KB with
MMX,SSE,SSE2, Compiled C

Alg. with lookup
KB-table ignore
tab. loading time

104264
(not opt.)//
384MB/s

99867
//

400MB/s

Intel P4, 2.80GHz, L1 data 16KB with MMX, SSE,
SSE2,SSE3, Compiled C

Alg. with lookup
KB-table ignore
tab. loading time

52242
(not opt.)//
766MB/s

51381
//

778MB/s

Many tests of encoding and decoding rate of Base91,

Base64, Base85 have made by us. In our tests the input

data are 40MB (average over en/decoding 100 times), the

unit of expend time is μs, and the unit of en/decoding rate

is MB/s. Because there are many differences of hardware

and software, we just give the timing results and relative

parameters in our tests in Table 2 and Table 3. The timing

result of Base64 reported by reference [4], which is a

little better than ours of Base64 and Base91 because that

programmer made more things of optimum programming

in a PC with a little poor hardware than ours, we think

and don’t know his timing result whether including

8096-byte table loading time or not, is listed in Table 2,

too.

Table 3 40MB en/decoding time & rate of Base64/91/85

Code scheme Base64 Base91 Base85

Intel Celeron 330, 2.66GHz, L1 data 16KB with MMX,
SSE,SSE2,SSE3, Algorithm without lookup KB’s table
to speed up, Compiled C

encoding time 161318 359262 812440

decoding time 125210 135538 051841

en+decoding time 286528 494800 864281

average rate of
encoding & decoding 279MB/s 161MB/s 93MB/s

3. USAGE OF VASE91 IN THE COMPACT
REPRESENTATION OF IPv6 ADDRESSES

Base85 is used in the compact representation of IPv6

address being 128 bits long, the result is 20 printable

ASCII characters[3]. By a 0.1 increase of encoded bits in

one output byte, Base91 can do same things, but a note of

usage is needful.

We have two concrete way: 1) to divide IPv6 address

into one block of 11-bits and nine blocks of 13-bits; 2) to

divide IPv6 address into four 32bit-blocks. In the first

case encoding is ordinary, but don’t use special codeword

φn because the bit-length of 128, the output of decoding,

is known. In the second case a note of usage is following.

Differently from Base85 repeatedly using normal

integer division of 32-bit long words, we divide 32-bit

block into three sub-blocks (from left): B1 being 6-bits,

B2 and B3 being 13-bits respectively. The encoding of B2

and B3 is general as Eq.(1) and gives output bytes of

C2,C3,C4,C5. But for B1, we can directly encode it as

C1=R91_ch[B1] (3)

because 6bit-B1 is less than 91. For the inverse

transformation, which maps C1,C2,C3,C4,C5 to 32bit-

block, the rate of Base91 decoding is similar to that one

of Base85 decoding in Table 3, because there needs no

division operation.

4. CONCLUSION

Base91 has a higher encoding efficiency than Base64

or Base85, and has a higher encoding rate or (encoding+

decoding)’s rate than Base85.In the case of CPU with

16bit-word, Base91 has more superiority over Base85. If

using lookup KB-table to speed up, then encoding rate of

Base91 is similar to one of Base64. Besides, Base91

provides compatibility with any bit- length input

sequence without additional filling declaration except for

his codeword self.

So, we suggest that Base91 is good substitute for

Base85 firstly, and maybe is qualified substitute for

Base64 to get some benefits in restricted situations.

Recalling the difference of data expansion rates of

Base91 and Base64, see Table 1, there is 7.7% (of

Base64’s encoded data) cut off in data traffic, transfer

time, transfer cost, at the same time there is saving our

society some energy, if employing Base91 instead of

Base64 as encoding for network data transfer with huge

data.

5. REFERENCES

[1] RFC4648, “The Base16, Base32, Base64 Data Enco-

ding”, 2006.

[2] RFC2045,“Multipurpose Internet Mail Extensions

(MIME) Part One: Format of Internet Message

Bodies”,1996.

[3] RFC1924,“A Compact Representation of IPv6 Add-

resses”,1996.

[4]http://www.experts-exchange.com/Programming/Lang

uages/CPP/Q_21988706.html

[5] A digital data transforming method, Chinese Patent

ZL00112884.1, Application date: Apr.28,2000,

inventors: Dake He, Wei He.

[6] Digital Data Transforming Method, US 6,859, 151B2,

Feb.22,2005, inventors: Dake He, Wei He.

http://www.experts-exchange.com/Programming/Languages/CPP/Q_21988706.html
http://www.experts-exchange.com/Programming/Languages/CPP/Q_21988706.html

	1. BACKGROUND OF INVENTION
	2. BASE91 CODE
	2.1 Base91 encoding
	2.2 Implementation of Base91 encoding

	3. USAGE OF VASE91 IN THE COMPACT REPRESENTATION OF IPv6 ADDRESSES
	4. CONCLUSION
	5. REFERENCES

