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ABSTRACT 

In this paper we propose a novel approach to solving the nearest 

neighbor search problem. We propose to build a data structure 

where the greedy search algorithm can be applied which is 

known to have logarithmic complexity in structures with 

navigable small world properties. The distinctive feature of our 

approach is that we build a non-hierarchical structure with 

possibility of local minimums which are circumvented by 

performing a series of searches starting from arbitrary elements 

of the structure. The performed simulation shows that the 

structure built using the proposed algorithms has navigable 

small world properties with logarithmic search complexity 

which is retained even for high-dimensional data. 

Keywords: Similarity Search, Small World, Distributed Data 

Structure 

1. INTRODUCTION 

We present a new approach for solving nearest neighbor search 

problem in general metric space. This problem appears when 

we need to find a closest object     from finite set of objects 

    to given query    , where   is the set of all possible 

objects (data domain). Closeness or proximity of two objects 

         is defined as distance function          . 

In general, the search problem can be described as follows:  

Let   be a domain, d a distance measure on  , and (    a 

metric space. Given a set     of    elements, preprocess or 

structure the data, so that proximity queries are answered 

efficiently.  

The nearest neighbor search problem is relevant to many 

applications such as pattern recognition and classification [1], 

content-based image retrieval [2], machine learning [3], 

Recommendation systems [4], searching similar DNA sequence 

[5], semantic document retrieval [6]. 

In a trivial case data structure   is a simple linear list. The 

complexity of addition operation is     , but searching for 

closest object for   requires evaluation of the metric function 

for every element from the set of objects  . This amounts to 

complexity     , where   is the number of objects in  . 

General way to reduce amount of distance measure calculations 

consists of building a set of equivalence classes, discarding 

some classes, and exhaustively searching the rest [7]. Authors 

also showed that two main techniques based on equivalence 

relations, namely, pivoting and compact partitions encompass 

all the existing methods. Pivot technique relies on taking   

pivots and mapping the metric space onto    using the    

distance and they can outperform a compact partitioning index 

if it has enough memory. Methods based on compact partition 

are more efficient for spaces with high dimensionality.  

However, methods from both classes generally use either data 

structures with tree topology (GNAT, GHT, SAT, BST, VT, 

MT) or, in some cases, distance matrix (ALAESA, LAESA) 

We suggest using for solving nearest neighbor problem a data 

structure with small word network topology presented by graph 

      , where every object    from   is uniquely associated 

with vertex    from   .  Thereby searching for the closest 

element to query   from the data set   will take the form of 

searching for a vertex in the graph       . 

Application of that approach is based on follows: 

 There exist algorithms for building small world 

networks that have the ability to perform nearest 

neighbor and addition of a new object to the structure 

with complexity of      [8]. 

 Small world networks have no root element.  

 All operations (addition and search) use only local 

information and can be initiated from any element 

that has been added to the structure. 

This gives opportunity for building decentralized similarity 

search oriented storage systems where physical data location 

doesn’t depend on the content because every data object can be 

placed on the arbitrary physical machine and can be connected 

with other by links like in p2p systems. Such storage systems 

can provide simultaneous access to  large numbers of users for 

performing data search and addition), have good fault tolerance 

and have unlimited scalability in terms of performance and 

capacity.  

One of the basic vertex search algorithms in graphs is greedy 

search. This algorithm has simple implementation on the 

structure that has small world network topology and can be 

initiated from every vertex. 

In order for the result of the algorithm to be the exact nearest 

element to the query, the network should contain the Delaunay 

graph as its subgraph, which is dual to the Voronoi tessellation 

[9]. 

However, the requirement of search in for the exact nearest 

neighbor can be excessive (optional) for the applications 
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described above. So the problem for finding the exact nearest 

neighbor can be substituted for the approximate nearest 

neighbor search, since we don’t need to support whole/exact 

Delaunay graph. 

For the search algorithm to be logarithmically scalable, the 

small world network should have navigation property that was 

already discussed in [8] 

In this paper we present the algorithm for data structure 

construction based on small world network topology with graph  

       which uses greedy search algorithm for finding 

approximate nearest neighbor. Graph        contains 

approximate Delaunay graph and has navigation property. 

Search algorithm has the ability to change accuracy of search 

without modification of the structure. Presented algorithms do 

not use the coordinate representation and do not presume the 

properties of linear spaces, because they are based only on the 

metric computation between objects, and therefore is applicable 

to data from general metric spaces. 

2. RELATED WORKS 

Kd-tree [10] and quadra trees [11] were among the first 

structures for solving exact nearest neighbor search problem. 

They perform well in 2-3 dimensions (search complexity is 

close to        ), but analysis of the worst case for that 

structures [12] indicates             search complexity, 

where   is dimensionality. 

Other structures which have tree topology such as variants of 

kd-trees, R-trees and structures based on space-filling curves are 

surveyed in [13]. They also have good performance when 

searching in a low-dimension (   ) metric space, but they 

quickly lose their effectiveness with increasing number of 

dimensions [14]. A more effective data structure for exact 

nearest neighbor search in    with search complexity 

          has been described in [15]. But as can be seen, 

search complexity has exponential dependence from the number 

of dimensions. 

Structures such as mvp-tree [16], vps-tree and vpsb-tree [17] use 

“vantage point” technique, but no analysis has been provided 

for search complexity in spaces with high number of 

dimensions. 

In general, presently there are no methods for effective exact 

nearest neighbor search in high-dimensionality metric space. 

The reason behind it lies in the "curse" of dimensionality [7]. 

To avoid the curse of dimensionality while retaining the 

logarithmic scaling of the number of elements, it was 

proposed to reduce the requirements for finding the nearest 

neighbor, making it approximate. 

Thus a large number of papers appeared which proposed to 

search for  nearest neighbor with ε accuracy (ε-NNS). For 

example, Arya and Mount proposed methods with search 

complexity         , but preprocessing requires       and 

algorithm was applicable only to data from Ed [18]. 

Kleinberg proposed two methods [19] for solving ε-NNS. First 

method requires             preprocessing time and query 

time polynomial in     and     . Another method with 

preprocessing polynomial in d,  ε and n, but with query time 

           . Also both methods are applicable only to data 

from Ed 

The first algorithms with search complexity polynomial in  , 

    , ε-1 and polynomial preprocessing time for fixed ε were 

proposed  by Indyk and Motwani in [20] and Kushilevitz, 

Ostrovsky and Rabani in [21]. Indyk and Motwani were the first 

ones to relax ε-ANN problem to approximate point location in 

equal balls (ε-PLEB). For the formulation of the problem in ε-

PLEB points in metric space expand to the balls with center at 

this point and radius (1+ ε)r, it is necessary to determine which 

ball belongs to the query  . Also in [20] proposed a second 

method, which uses the concept of locality-sensitive 

hashing regarding formulation of the problem ε-PLEB, with 

search time            , 

however requires near quadratic memory (for small ε). In 

addition, the first method is applicable only for   , and the 

second for the Hamming space. 

In general, the concept of locality-sensitive hashing has become 

popular in the last decade to solve the ANN problem. Other 

works using the concept of locality-sensitive hashing are [22], 

[23]. But they all have the same major drawback: each 

algorithm is focused on a narrow class of metrics such as 

Hamming distance, Jakarta or    norms for Euclidean space. 

Thus it is necessary to create digests in order to decide which 

method to choose. 

The first structure for solving ANN in Ed with topology of small 

world networks is Raynet [24]. It is an extension of earlier 

work by the same authors Voronet [25], which solved the 

problem of the exact NN in E2. Originally Voronet 

was envisioned as a p2p network, where every node has 

coordinates in E2. In Raynet every node has the coordinates in 

Ed. The system supports two levels of links  - short for correct 

work of the greedy search algorithm and long - for logarithmic 

search. Short links correspond to edges of Delaunay graph, 

i.e. each object has references to objects that are neighbors of its 

Voronoi region. The main difference of Raynet from Voronet is 

that in Raynet every object doesn’t know all of its Voronoi 

neighbors, i.e. Raynet obtains neighborhood with 

approximately using the Monte Carlo method. 

Raynet is the closest work to ours in terms of general concept.  

But unlike Raynet, we propose a structure that works with 

objects from arbitrary metric spaces. 

3. STRUCTURE OVERVIEW 

We solve the problem of approximate nearest neighbor search 

formulated as follows: given objects from domain   with 
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distance function        . For finite set               

    an effective probability search method is required to 

find      which is closest to    . Effective method means 

that search complexity must scale logarithmically with the 

number of elements in  . The exact search is not guaranteed, i.e. 

the result of the algorithm may be an element that is not 

true nearest neighbor, nevertheless structure and algorithms are 

designed to minimize the probability of this and there is a 

possibility to adjust it by varying the parameter of the search 

algorithm without changing the structure. 

The structure of   is constructed as a small world network 

described by a graph       , where the objects from the set 

  are uniquely mapped to the vertices from the set  . The set of 

edges   is determined by the structure construction 

algorithm, so as to ensure correct operation of the greedy search 

algorithm. 

Since in the proposed structure each vertex is uniquely mapped 

to an element from the set  , we will use the terms 

"vertex", "element" or "object" interchangeably. We will use the 

term “friends” for vertices that share an edge. List of 

vertices that share a common edge with the vertex    is 

called the friend list of vertex   . 

4. SEARCH ALGORITHM 

Greedy Search 

The basic search algorithm traverses the edges of the graph 

       from one vertex to another. The algorithm takes two 

parameters: query and the vertex                    which 

is the starting point of search (the entry point). Starting from the 

entry point at each vertex the algorithm computes the metric 

value from query q to each vertex from the friend list of the 

current vertex and then selects the vertex with minimal value of 

the metric. If the metric value between the query and the 

selected vertex is smaller than between the query and the 

current element, then the algorithm moves to that vertex. After 

that the algorithm repeats. The algorithm stops at the vertex 

whose friend list doesn’t contain a vertex that is closer to the 

query than the vertex itself. That vertex is a local minimum. 

Greedy_Search(q: object, venter_point: object) 

1  vcurr ← venter_point;  

2  dmin ← d(q, vcurr); vnext ← NIL; 

3  foreach vfriend   vcurr.getFriends() do 

4     if d(query, vfriend) < dmin then 

5        dmin ← d(q, vfriend); 

6        vnext ← vfriend; 

7  if vnext = Nil then return vcurr; 

8  else return Greedy_Search(q, vnext); 

The element which is a local minimum with respect 

to query q, can be either the true closest element to the query q 

from the entire set of elements of  , or a false closest..  

If every element in the structure had in their friend list all of its 

Voronoi neighbors, then this would exclude the existence 

of false local minimums. Maintaining this condition is 

equivalent to constructing Delaunay graph, which is dual to the 

Voronoi diagram. 

Because it is impossible to determine exact Delaunay graph [26] 

(excluding the variant of the complete graph) we cannot avoid 

the existence of local minimums.  

But for the problem of approximate searching as defined 

above it is not an obstacle since approximate search does not 

require the entire Delaunay graph [24]. As shown below, the 

probability of finding the true nearest element tends 

exponentially towards 1 with increase of the average number of 

edges in the approximated Delaunay graph. 

Multi Search  

In order to be able to find the true closest element in a 

network with local minimums, we propose the following 

modification of the search algorithm. We propose to use a 

series of m searches initiated from random vertices and choose 

the result element that is closest to the query from the set of 

found elements. Since the greedy search 

Greedy_Search(q, venterPoint ϵ V)is deterministic for 

each entry point venterPoint ϵ V it either results in a success -

finding the true nearest neigbor, or with a failure - finding the 

element that is not the nearest neighbor of q. 

 

Thus search of the closest element to the same query   may 

result in finding of the true nearest neighbor or a false nearest 

neigbor depending on the entry point from which the search 

algorithm started.  

Since we can choose the entry point at random,  there is a 

probability   of finding the true closest to the particular element 

q (but not to all elements). Moreover, this probability is always 

nonzero, because it is always possible to choose the exact 

nearest neighbor as the entry point, which subsequently will be 

returned by the greedy search algorithm. 

If probability to find true closest in one search attempt is p then 

probability to find the same element in   search attempts is 

        , so failure probability decreases exponentially 

with the number of search attempts. Thus, we can 

improve search precision, increasing the parameter   - number 

independent searches. 

Multi_Search(object q, integer: m) 

1  results: SET[objects]; 

2  for (i   0; i < m; i++) do 

3    enter_point   getRandomEnterPoint(); 

4    local_min   Greedy_Search(query, 

enter_point) 

5    if local_min   results then 

6       results.add(result); 

7  return results; 



If    , where   is the number of elements in the structure, 

the algorithm becomes exhaustive search. 

If the graph of the network has small-world properties, then it is 

possible tp choose a random vertex in a number of random steps 

proportional to      , which doesn’t affect overall logarithmic 

search complexity. 

Therefore the overall complexity of the search will increase no 

more than   times. 

5. DATA ADDITION ALGORITHM 

Since we build an approximation of the Delaunay graph,  there 

is much freedom in the choice of construction algorithm. For 

example in [24]  it is proposed to build approximate Delaunay 

graph which minimizes the volume of Voronoi region for a 

fixed number of edges for each vertex in the graph. In [27] it is 

proposed to connect new element with k closest objects which 

are already in the structure. It is based on the idea that 

intersection of the set of elements which are Voronoi neighbors 

and the k closest elements is large. In [27], [28] authors also 

have shown theoretically and confirmed by experimental results 

that graph which constructed by proposed algorithm has 

properties of small world network if elements arrive in random 

order.  

We propose a modified variant of this algorithm which is 

distinguished by the fact that that the search for k nearest 

elements uses a series of searches. 

The algorithm takes three parameters: the object to be added to 

the structure and two positive integers k 

and init_attempts. First, the algorithm determines a set 

of local minima, using the procedure Multi_Search, which 

produces a series of independent searches on init_attempts of 

randomly selected elements from the set of objects that already 

have been added to the structure. After that algorithm 

determines neighborhood u, which contains all neighbors of 

each found local minimums. Set u is sorted in ascending order 

by distance from the object new_object to be added. After 

that new_object is connected with the 

first K nearest elements from the set of u. 

Nearest_Neighbor_Add(object: new_object, 

integer: k, integer: init_attempts) 

1  SET[object]: localMins   

MultiAttempts_Search(new_object, 

init_attempts); 

2  SET[object]: u   ; //neighborhood; 

3  foreach object: local_min   localMins 

do 

4    u   u   local_min.getFriends(); 

6  sort the set u so to satisfy the 

condition d(u[i], new_object) < d(u[i+1], 

new_object) 

7  for (i   0; i < k; i++) do 

8    u[i].connect(new_object); 

9    new_object.connect(u[i]); 

Fig 1 shows the structure which is constructed by 

Nearest_Neighbor_Add algorithm for points from E2. 

Circles denote the elements. The numbers near 

thems correspond to the addition order. Solid lines show 

the links (edges) between elements. Dotted lines correspond to 

the borders of Voronoi tessellation. Delaunay graph edges 

between elements 0 and 10, 1 and 9 are missing. The 

structure obtained by the algorithm with parameters m = 3 

and attemptsNumber = 5. Element with  number 0 is a local 

minimum, which is not the closest to queries that fall into the 

A
C

B D

8

6

4

5

 

0

10

11

9

3
7

1

 
Fig 1 

http://lingvo.yandex.ru/exchaustive%20search/%D1%81%20%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%BE%D0%B3%D0%BE/LingvoScience/


shaded area "A", respectively 10 for the "B", 9 for D and 1 for 

the region"C". Hatched lines show the paths of the two search 

algorithm runs for  query q in the region "B". The algorithm run 

which starts from vertex 7 stops on the element 10 which is 

local minimum, but not the closest to the query q. However, 

the algorithm run which starts from vertex 5 finds the true 

closest vertex to the query q.  

6. EXPERIMENT RESULTS 

 

We have implemented the algorithms presented above in order 

to validate our assumptions about 

the logarithmic search complexity dependence of the total 

number of elements. 

We used randomly selected points from the ED as test 

dataset.  L2 (Euclidean distance) was selected as proximity 

function 

  elements were added to the structure. We chose the number of 

search attempts m  so that the probability of finding the true 

closest element to the query was not less than 95%. The number 

of metric calculations was measured. The graph shows 

the percent of scanned elements (vertical) with an increase 

in the number of added elements in the structure (horizontal). 

The graph (Fig 2) shows that with the increase of number 

of elements in the structure, the percentage of visited elements 

decreases, and the curve becomes a straight line with angle 45 

degrees. This gives us grounds to speak 

of logarithmic complexity of the search on the number 

of scanned elements. 

The graph shows that the curve for higher 

dimensions behaves similarly. From this we can make the 

assumption that there is no exponential dependence from the 

dimension of space. But it requires more careful study. 

7. CONCLUSION 

We have proposed a method of organizing data into a small 

world topology data structure suited for approximate nearest 

neighbor search in metric space. 

We have created a modified   nearest neighbor connection 

algorithm which is one of the possible algorithms for 

construction of small world data structures with navigation 

properties.  

Simulation results confirm logarithmic dependency of search 

complexity from the number of elements in the structure. 

All proposed algorithms use only local information on each step 

and can be initiated from any vertex.  

All elements in the structure are of the same type, there is no 

central or root element.  

Thus, all mentioned structure properties are a basis for using the 

structure for building totally decentralized data storage systems. 
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