
 

ABSTRACT 

The envisioned role of computer programs in health care 

is perhaps the most important. Everything we know today 

in medicine might not have been possible without the 

valuable contribution of computers. Medical knowledge 

in modern health care is vast and constantly changing, as 

well as expanding. The provisioning of Clinical Decision 

Support Systems (CDSSs) would enable the discovery of 

patterns in health data which might be important for the 

fight against incorrect diagnosis. Medicine uses empirical 

knowledge about superficial associations between sym-

ptoms and diseases. Uncertainty is a central, critical fact 

about medical reasoning. Many of intelligent CDSSs are 

based on the fuzzy set theory, which describes medical 

complex systems mathematical model in terms of 

linguistic rules. Considering the fuzzy nature of the data 

in a medical environment, it becomes obvious that the 

ability of managing uncertainty turns to be a crucial issue 

for CDSSs.  

Since the potential of medical decision making was first 

realized, hundreds of articles introducing CDSSs have 

been published in the last three decades. But even today, 

only few systems are in clinical use. Even fewer are in 

use outside their site of origin.  

This paper addresses, works out advantages and dis-

advantages of several approaches and compares them 

against possible alternatives. Finally, experiences, gained 

by clinical use of two introduced systems, are used to 

analyze the little use of CDSSs in today‟s clinical routine 

practice. 
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1. INTRODUCTION 

Over the two past decades, medical treatment has made 

enormous progress, resulting in new medical data about 

the patient‟s condition and an increase in the complexity 

of medical protocols.  

A computerized Intensive Care Unit (ICU) especially is 

an extremely data-intensive environment, resulting in 

enormous databases. Physicians and nurses are still 

performing time-consuming manual data analysis for 

making the most optimal medical decision for each 

individual patient [1-5]. Moreover, current ICU platforms 

are not offering an infrastructure for decision support, 

data-driven guidance, infection surveillance or modeling 

of critical illness. The provisioning of a Clinical Decision 

Support Systems (CDSS) in such an environment would 

enable the discovery of patterns in health data which 

might be important for the fight against nosocomial 

infections, incorrect diagnosis, unnecessary prescriptions, 

and improper use of medication.  

In addition to the huge amount of data, in this special 

environment, the complexity of these biological systems 

makes the traditional quantitative approaches of analysis 

inappropriate. Medicine uses empirical knowledge about 

superficial associations between symptoms and diseases. 

Also, many data, symptoms, or diagnosis can be affected 

by incompleteness, subjectivity, and inaccuracy. In many 

areas the main characteristic of medical information is 

uncertainty.  

In other words real world knowledge is characterized by 

uncertainty, incompleteness and inconsistency. Fuzzy set 

theory, which was developed by Zadeh [6], [7], makes it 

possible to define inexact medical entities as fuzzy sets. 

Considering the uncertainty or fuzzy nature of the data in 

a medical environment, it becomes obvious that the 

ability of managing uncertainty turns to be a crucial issue 

for CDSSs. The implications of this approach, equal with 

or without the fuzzy set theory, where promised to be that 

CDSS or Decision Support Systems (DSSs) in general 

deal with complex and difficult problems, and make 

better and more reasoned decisions. Over the years‟ the 

experience has shown that the expectations were not 

always fulfilled. 

This paper surveys on two applications the capabilities as 

well as limitations of CDSS. The systems are established 

as real-time applications in an ICU and have reached the 

state of extensive clinical integration and testing at the 

Vienna general hospital.  

2. DECISION SUPPORT SYSTEMS 

Generically DSS are any type of application that support 

the decision making process. A DSS receives a certain 

amount of data as input, processes it using a specific 

methodology and offers as a result some output that can 

help the (physicians) decision-makers [5], [20]. A typical 

therapeutic cycle in a simplified view is shown in Fig.1.  
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In principle a DSS can be classified into the following six 

frameworks [21]: Text-, Database-oriented, Spreadsheet-

oriented, Solver-oriented, Rule-oriented, and into a 

Compound DSS. A compound DSS is the most popular 

classification for a DSS [22], [23]. It is a hybrid system 

that includes two or more of the five basic structures of 

DSSs. The input data could be clinical, administrative or 

financial. In addition, the input data can also be a signal 

automatically acquired from medical devices. Depending 

on the methodology used by the DSS some additional 

data should also be available such as certainty factors for 

uncertainty handling by either symbolic or connectionist 

based DSS. 

 

 

Figure 1: The Diagnostic-Therapeutic Cycle (a simplified view) 

 

Expert or knowledge-based systems are another type of 

DSS capable of being programmed to perform decision 

making at the level of a domain expert. These systems 

represent the most prevalent type of DSSs used in 

medical clinical practices today [19].  

Though CDSSs can include different components, and 

though domain knowledge can be structured in a variety 

of ways, certain elements are common to all: a user 

interface, a knowledge base, a database, a knowledge 

acquisition facility, and an inference mechanism. 

 

2.1 Clinical Decision Support and Fuzzy Control 

The concept of fuzzy set theory, which was developed by 

Zadeh (1965), makes it possible to define inexact medical 

entities as fuzzy sets [6]. The Fuzzy set theory [7], [23] 

derives from the fact that most natural classes and 

concepts are of fuzzy rather than crisp nature. On the 

other hand, people can approximate well enough to 

perform many desired tasks. By generalization of usual 

set theory an object cannot only be seen as an element of 

a set (membership value 1) or not an element of this set 

(membership value 0), but it can also have a membership 

value between 0 and 1. Therefore fuzzy sets defined by 

their membership function μ which is allowed to assume 

any value in the interval [0, 1] instead of their 

characteristic function, (Fig. 2). 

A more far-reaching concept of modeling relationships 

was introduced by Sanchez 1979. Sanchez postulates the 

concept of “medical knowledge” based on a relationship 

between symptoms and diagnoses [14], [27]. 

 

 

Figure 2: Characteristic function of a set M and 

membership function of a fuzzy set A. 

 

Using this composition formula as an inference rule, 

Assilian and Mamdani developed the concept of fuzzy 

control in the early 1970s [12].  

Mamdani‟s development of fuzzy controllers in 1974 

gave rise to the utilization of these fuzzy controllers in 

ever-expanding capacities [13], [24]. What is needed is a 

system which can process quantitative and qualitative 

data of varying levels of precision and, by reasoning, 

transform this data into opinions, judgments, evaluations 

and advice. These new intelligent Fuzzy CDSS must be 

able to expect a tolerance for imprecision, uncertainty, 

and partial truth to achieve tractability, robustness, low 

solution cost, and better rapport with reality. 

 

2.2 PDMS based Medical Applications 

Based on the use of a Patient Data Management System 

(PDMS) the medical applications SIRS Detection and 

FuzzyKBWean are realized in the cardiothoracic ICU at 

the Vienna general hospital.  

The PDMS is in routine clinical use in the cardiothoracic 

ICU and collects data from all available monitoring 

devices in intervals of 1 minute [8-10]. The system came 

up to more than 2 million data entries; laboratory data 

and blood gas analysis was done according to 

institutional standards; the data of daily balance and 

treatment was recorded every day (Fig. 3).  

 

 
Figure 3: Cardiothoracic PDMS-chart, University Hospital of Vienna 

 



The PDMS is the platform, the data-source, for several 

CDSSs, used at the General Hospital of Vienna.  

 

2.3 Early SIRS detection  

The syndrome of generalised inflammation is defined as 

Systemic Inflammatory Response Syndrome" (SIRS) or 

severe SIRS if hypotension is present simultaneously. 

After major surgery many patients develop signs and 

symptoms of generalised inflammation. The term‟s SIRS, 

sepsis, septic shock and MODS (multi organ dysfunction 

syndrome) are used to describe the different extents of 

inflammation and infections [11]. SIRS was proposed to 

define sepsis and its sequelae clearly in 1991, in order to 

make early detection of the disease possible, and to 

improve the ability to compare innovative potential 

diagnostic modalities by standardizing terms. Clinicians 

are facing the challenge to differentiate between post- 

operative inflammation a condition considered to be 

benign and early signs of infection [15-17]. 

Regardless of etiology, SIRS manifests itself through two 

or more of the following symptoms (Table I). 

Sepsis is defined as SIRS when the systemic response is 

the result of an infection [15]. The development of a 

SIRS and sepsis are well known complications after 

cardiothoracic surgery. The management of sepsis based 

on elimination of the causative infection by surgery, 

antibiotics, and supportive treatment has not sufficiently 

changed the mortality rate over the past decades. 

 
TABLE I: SIRS SYMPTOMS 

 heart rate > 90 per minute 

 body temperature < 36 or > 38 °C 

 respiratory rate > 20 per minute or pCO2 < 32 mmHg 

 white blood cell count (WBC) < 4 or > 12 billion cells/liter 

 

Sepsis remains an important and life-threatening problem 

and the most common cause of death with mortality 

between 20 to 50% for severe sepsis and 45 to 80% for 

septic shock [16], [18]. The progression from sepsis or 

severe sepsis to a septic shock with its increased mortality 

may be prevented by the initiation of appropriate therapy. 

Implemented as a CDSS we tried to use SIRS in the ICU 

as a predictive tool, to prevent the risk of sepsis.  

We determined in the first phase the moment of the first 

occurrence of SIRS and severe SIRS. In the following 

phase, we determined the number of SIRS episodes on 

the individual patient and investigated the influence of 

this parameter on the outcome of patients. At last we tried 

to discover a possibly existing relationship between the 

treatment and the development of SIRS in order to find 

an optimal time for the SIRS intervention. At the Vienna 

University Hospital 1925 patients were admitted during 

the time period mentioned above. Among those patients, 

we identified some cases as the second and some as the 

duplicate admission of the same patients. The admissions 

in succession of the same patients were considered as one 

admission, if the pause was less than 24 hours. Otherwise 

they were considered as two independent admissions. 

Severe SIRS was defined as SIRS with at least 2 of the 

following criteria for organ dysfunction as defined in the 

SOFA score [18], shown in Table II.  

TABLE II: SIRS SEVERE CRITERIA 

 systolic arterial pressure (SAP) < 90 mmHg or mean arterial 

pressure (MAP) < 70 mmHg or dopamine medication 

 PaO2/FiO2 < 400 

 bilirubin greater than or equal to 1.2 mg/dl 

 creatinin greater than or equal to 100 mmol/l or urine output 

< 500 ml/day 

 platelet count < 150000/mm3 

 

For prediction of severe SIRS, the knowledge base was 

constructed with the following input variables: body 

temperature, heart rate, pCO2, WBC, SAP, MAP, 

PaO2/FiO2, bilirubin, creatinin, platelet count, and CRP. 

The output variable was the presence of severe SIRS in 

the following two hours. 

 

2.4 Ventilator Weaning Application  

The majority of patients requiring mechanical ventilation 

in the intensive care unit are safely weaned from 

mechanical ventilation within a short period of time. 

Patients require mechanical ventilation during surgery, 

when they are anaesthetized, and must be slowly weaned 

from mechanical ventilation after major surgery to a point 

when they can breathe spontaneously. At this point, the 

patients can be extubated. In other words, the tube that is 

placed in the trachea to ensure proper ventilation is 

removed [8], [10]. The aim of an improved weaning 

process would be to make the transition from controlled 

ventilation to total independence (extubation) as smooth 

and brief as possible. 

2.4.1 FuzzyKBWean Application  

The in the ICU implemented CDSS FuzzyKBWean is an 

open-loop application that contains the knowledge and 

expertise of experienced intensive care physicians in 

computerized form.  

It offers decision support for ventilator control during the 

weaning process of patients after cardiac surgery. The 

respirator changes effected by the physician have to be 

entered into FuzzyKBWean as a feedback for this open-

loop system. The ventilator mode used for weaning must 

allow spontaneous breathing and a gradual reduction of 

the amount of ventilator support [8], [9].  

The BIPAP (Biphasic Positive Airway Pressure) mode is 

a mode equipped with a standard ventilator [10]. This 

mode allows spontaneous inspiration during the entire 

respiratory cycle and, consequently, a very smooth and 



gradual change from controlled to spontaneous breathing. 

The fuzzy knowledge bases consist of variables, values, 

and rules. The variables represent the physiological 

parameters of the patient and the respirator settings. The 

values are described in linguistic terms that are 

formalized by fuzzy sets.  

2.4.2 PDMS Data Input  

The respirator settings and physiological parameters are 

taken as input at one-minute intervals from the Patient 

Data Management System (PDMS) Picis®. The PDMS is 

in routine clinical use, at the cardiothoracic ICU of the 

General Hospital of Vienna, and collects data from all 

available monitoring devices. The system analyzes these 

data and makes suggestions for appropriate respirator 

setting adjustments. The attending intensive care 

specialist (physician) is free to decide whether he will 

follow the given advices. 

3. RESULTS AND DISCUSSION 

3.1 Early SIRS Detection 

With the current system it could be showed that SIRS 

was present in 1544 patients (92.2%), SIRS with 

hypotension (SAP < 90 mmHg or MAP < 70 mmHg) in 

1315 (78.6%) and severe SIRS in 1175 (70.2%) of the 

total of patients. The time points of first fulfilment of 

SIRS and SIRS severe are shown in Table III.  

 
TABLE III: FIRST FULFILLMENT OF SIRS SEVERE 

time delay 

after surgery 

(h) 

patients 
severe 

SIRS 

severe SIRS /  

severe SIRS total (%) 

<6 1207 669 56.9 

6 – 12 150 233 19.8 

12 – 18 64 76 6.5 

18 – 24 48 55 4.7 

24 – 30 20 30 2.6 

30 – 36 10 21 1.8 

36 – 42 16 22 1.9 

42 – 48 7 15 1.3 

48 – 54 4 10 0.9 

54 – 60 4 4 0.3 

60 – 66 2 4 0.3 

66 – 72 2 6 0.5 

>72 10 30 2.6 

total 1544 1175 100.0 

 

The analysis of the treatment of the patient population 

also showed that the repeated episodes in the SIRS 

process are also a crucial factor of rising costs for the 

ICU, because the patients with several SIRS episodes 

received significantly more frequent and longer medical 

treatment than those patients who had no SIRS or only 

one SIRS episode. The resulting mortality SIRS to severe 

SIRS is shown in Fig. 4. 

 

Figure 4: Mortality from SIRS to severe SIRS.  

 

3.2 FuzzyKBWean System 

The bedside real time application of FuzzyKBWean is 

shown in Fig. 5. The user interface has two main- units. 

The online (real time-data) unit, and a so called history 

(data base related) unit. It is possible to toggle between 

these units, so that always one or both of them have the 

focus. The top panel displays actual values and proposals, 

middle panel allows data review from any previous time 

point and, bottom panel displays key variables of the 

ventilation process together with the proposed new 

settings. 

 

 

Figure 5: FuzzyKBWean frame application  

 

The system is continuously being tested with prospective 

randomized cases currently undergoing treatment. It can 

be found that the clinical staffs react with a longer delay 

to hyper- or hypoventilation then the program does. The 

mean delay in case of hyper- ventilation was 127 

minutes, Standard Error of Mean (SEM) 34; the 

corresponding value for hypoventilation was 50 minutes 

(SEM 21). The obtained results confirm the applicability 



of FuzzyKBWean to represent medical knowledge, thus 

rendering the weaning process transparent and compre-

hensible. Periods of deviation from the target are shorter 

with FuzzyKBWean.  

Due to the system is an open loop system, and therefore 

manual settings of the ventilator cannot be very precise, 

the utilisation is poor. Only a closed-loop application, i.e. 

a direct connection between the system and the ventilator, 

would allow smooth adaptation continuously.  

To increase the usability of an open-loop system a more 

intuitive user interface has been developed.  

In order for physicians to be able to make weaning 

decisions at the bedside, they need to be able to easily 

retrieve, digest, manipulate, and utilize information 

relevant to the decision making process. An interface 

approach that visualizes the actual patient status in the 

current weaning variation of time is shown in Fig. 6. 

Figure 6:  Progressive weaning and patient actual status 

The goal is to find out an intuitive user interface that is as 

simple as possible and even so gives the physician a good 

perception where the patient is currently positioned in the 

weaning variation of time. 

4. CONCLUSIONS 

When CDSS or DSS in general where initially developed, 

each knowledge base and inference mechanism required 

programming before the knowledge base content could be 

written. As the field evolved, researchers found that it 

was possible to separate the inference mechanism from 

the domain specific knowledge and databases. This key 

design feature became responsible for the commercial 

success of decision support systems. Producing standard 

inference mechanism and knowledge bases made it 

possible to unplug one knowledge base and then connect 

a different one. 

In medicine it is the uncertainty found in the process of 

diagnosis of disease that has most frequently been the 

focus of applications of fuzzy set theory. Two fields of 

fuzzy applications were developed since the nineteen 

seventies: intelligent patient monitoring systems and 

computer assisted diagnostic systems. Both developments 

of Zadeh‟s rule of max-min composition, namely fuzzy 

relations and fuzzy control, have been applied in these 

areas. As mentioned above, computer-assisted systems 

using fuzzy methods will be better able to manage the 

complex control tasks of physicians than common tools. 

Most control applications in the hospital setting have to 

be performed within critical deadlines.  

Fuzzy Logic in medicine is still a largely untapped area 

that holds great promise for increasing the efficiency and 

reliability of health care delivery. The principles behind 

fuzzy logic are straightforward and its implementation in 

software is relatively easy.  

Based on the literature, current computer-based clinical 

CDSS or Fuzzy-CDS systems (FCDSS) are limited in 

application. Roughly seventy known proprietary medical 

CDSS exists. Only ten out of seventy CDSSs geared 

towards routinely use. There is no information available 

about a real daily average usage of these systems. 

A well-designed CDSS should have the potential to assist 

physicians who can and do use it as often as possible in 

the daily routine work. In some situations physicians 

learns from using a CDSS about criteria, facts or process 

issues that need to be considered in a specific decision 

situation. CDSSs encourage and promote “rationality” in 

decision making. CDSSs are intended to support not 

replace physicians, so the users need to consciously 

interact with a CDSS to use it effectively.  

A big issue is that the expectation needs to be created that 

the physicians are the ultimate authority and that the 

physicians can anytime “over rule” or choose to ignore 

analyses and recommendations of the CDSS. 

The greatest anticipated benefit of a CDSS lies in the 

constituency and uniformity in applying decision criteria 

of a given situation. Physicians have difficulty making 

decisions because they cannot exhaustively consider 

every factor relevant to the decision, due to either limited 

memory or limited information.  

Anticipated limitations of CDSSs are that an optimal 

physician‟s treatment requires that physicians be able to 

have the following information, in real time, if possible:  

What is happening right now? What will happen in the 

future? What do I need to create the future I want?  To 

answer these questions effectively, physicians requires 

data that are factual, factual inferential (why type 

questions) and predictive (what if questions). To date, the 

best support that a CDSS has been able to provide is data 

that answer factual and maybe some forms of predictive 

questions [26]. 

Physicians have no shortage of data available to them. 

Thus, physicians have found that currently available 

CDSSs are not able to meet their more complex 

information needs. As mentioned above one big argument 

of the rare utilization at this time is that most of the 

CDSSs have not progressed beyond the prototype stage.  

There are no standards or universally accepted evaluation 

or validation methodologies to ensure that the system‟s 

knowledge base is complete and correct.  

Further questions about CDSSs are: Does the use of a 

CDDS improve the quality of decisions produced? And 

are the economic or other benefits, as for instance 

patients comfort, attributable to the use of the CDSS?  

The absence of a well defined or universal evaluation 

methodology makes these questions difficult to answer. 



To date, an examination of the literature indicates that 

there is virtually no information available related to the 

cost or cost effectiveness of CDSSs.  

Most of the CDSSs are university-based developments, 

and still in prototype stage. These costs regarding the 

initial investment of CDDSs tend to be hidden and 

therefore difficult to access.  

This frightens or hinders the industry‟s interest in funding 

and encouraging the development of CDSSs in health 

care in general [25]. 

Still, many physicians have a real positive outlook on the 

potential for these systems, particularly relating to 

practitioner performance. However, until the use of 

CDSS is a routine as the use of the blood pressure cuff, it 

is important to be sensitive to resistance to using these 

systems. 
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