Parallel Implementation of Moving Averages on RMESH

John JENQ
Computer Science Department
Montclair State University
Montclair, New Jersey, USA

ABSTRACT

Moving averages are important financial
indicators. There are short term moving average
and long term moving averages. The interaction
of the short term moving averages and long term
averages give analyst the good clues about the
direction of future assets performance. In this
paper, the computation of two popular moving
averages are discussed. The n-day simple
moving average treats all past n days’ closing
prices equally while the n-day exponential
moving average assigns more weight to most
recent day and least weight to lease recent day
closing price when form the computation
formula. Both methods can be done in O(logN)
time on the Reconfigurable Mesh.

Keywords: moving average, parallel
processing, high performance computing.
Reconfigurable mesh

1. INTRODUCTION
Moving averages can be used as financial

indicators. The indicators are essential for
companies and financial firms to predict and
forecast the future performance of certain
companies and stocks. See [4] for example.
There are various types of moving averages. The
two most popular moving averages are simple
moving average and exponential moving
average.

Assuming the daily closing price for day t is C;.
The n-day simple moving average can be

i=t-n
defined as SMA(t) = % where C; is the
closing price at day i. The simple moving
average can be computed by taking the average
closing price of a stock, over the last N periods.

Some of the popular simple moving averages are
5, 10, 20, 40, and 200. The 5-day and 10-day

averages are considered as short term average
while the 200-day average will be considered as
long term average. The crossing of the long term
and short term averages can be used by some
investor as market indicators to buy or sell
stocks. Let's assume the last ten periods for a
stock are 1, 2, 3, 4, 5, 6, 7, 8, 9,and 10 then the
10 day simple moving average can be computed
as (1+2+3+4+5+6+7+8+9+10)/10 = 5.5. While
simple moving average giving all past n-day
closing price equally weight, the n-day
exponential moving average assign more weight
to recent price.

Exponential moving average can be defined as
EMA(t) = (P, — EMA(t — 1)) * a + EMA(t —
1), where P; is closing price at day t. The « is
weighting factor and can be defined as a =
2/(n+1), where n is the number of time
periods involving in the computation. For
example, for 10-day EMA, a =2/(10+ 1) =
0.181818. While 20-day EMA, a = 2/(20 +
1) = 0.095238.

In [5], Zhou and Zhang used financial indicators
such as moving averages, volumes, Relative
strength index, etc. on neural network to predict
future stock price. In [2], Jenq proposed
computation of SMA and EMA in order to be
used in stock market prediction run on a neural
network using GPU.

The rest of the paper was organized as the
following. Section 2 discusses the
Reconfigurable Mesh architecture, Section 3
discussed the basic operations that will be used
as building blocks to construct our algorithms to
compute simple moving average and exponential
moving average. Section 4 discuss the

implementation of both simple moving average
and exponential moving average on RMESH.
The time complexity for both algorithms are also
discussed. Section 5 concludes this report.

2. PRELIMINARIES ON
RECONFIGURABLE MESH WITH
BUSES (RMESH)

The particular reconfigurable mesh architecture
that we use in this paper is called RMESHI3]. It
employs a reconfigurable bus to connect
together all processors. Figure 1 shows a
4x4x2 RMESH. By opening some of the
switches, the bus may be reconfigured into
smaller buses that connect only a subset of the
processors.

The important features of an RMESH are:

a. An NxMxL RMESH is a 3-
dimensional mesh-connected array of
processing elements (PEs). Each PE in
the RMESH is connected to a broadcast
bus, which is itself constructed as an
N x M x L grid. The PEs are connected
to the bus at the intersection of the grids.
Each PE_manages up to six bus switches
(Figure 3) that are software controlled
and can be used to reconfigure the bus
into sub buses. The ID of each PE is a
triple (i , j, k) where i is the row index,
j is the column index and k is the plane
index. The ID of the upper left corner
PE on plane zero is (0,0,0) and that of
the lower right one is (N-1,M-1,0).

b. There are up to six switches associated
with a PE and are labeled as E (east), W
(west), S (south), N (north), B(back),
and F(front). Notice that the east (west,
north, south, back, front) switch of a PE
is also the west (east, south, north, front,
back) switch of the PE (if any) on its
right (left, top, bottom, back, front).
Two PEs can simultaneously set
(connect, close) or unset (disconnect,
open) a particular switch as long as the
settings do not conflict. The broadcast
bus can be subdivided into subbuses by

opening (disconnecting) some of the
switches.

Only one processor can put data onto a
given sub bus at any time

In unit time, data put on a subbus can be
read by every PE connected to it. If a PE
is to broadcast a value in register | to all
of the PEs on its subbus, then it uses the
command broadcast(l).

To read the content of the broadcast bus
into a register R, the statement R =
content(bus) is used.

Row buses are formed if each processor
disconnects (opens) its S switch, B
switch, and connects (closes) its E
switch. Column buses are formed by
disconnecting the E, and B switches and
connecting the S switches. Similarly, Z
buses can be formed by connecting F(or
B) switches and disconnecting E and S
switches. While the plane buses can be
formed by disconnecting B switch only.

I:I Processor

o Switch

— :lLink

Figure 1a4 x4 x 2 RMESH

3. BASIC DATA MANIPULATION 4. COMPUTATION OF MOVING

OPERATIONS AVERAGE ON RMESH
The following are operations which will In this section, we will discuss both the
serve as the building blocks to form our computation of simple moving average and
algorithms to solve the moving average exponential moving average.
problem. You can find the more detailed
discussion in [3], [1]. 4.1 Simple moving average on RMESH
3.1. Broadcast The main operation in computation of

simple moving average is to calculate the
prefix sum. By using the prefix sum
operation, the N-day Simple moving average
of day "i" can be calculate as

In a data broadcast operation, data
originated in one PE are sent to the
remaining N -1 PEs, where N is the
total number of PEs in the RMESH
network. This operation takes O(1) SMA[I] = (prefixSum[i] — prefixSum[i-N])/N

time. The following is the step by step detailed

3.2 Diagonalization algorithm that compute SMA in RMESH

This operation will diagonalize a row

(column) of elements, by which we

mean moving a specific row (column) SMA (n)
elements to diagonal positions with /lcompute n day simple average on
respect to that row (column). With the RMESH
:T]I\glif;:iﬁ]u: this operation can be done /linput: PE(0,j) contains the closing
price Svalue for day j
3.3 DataSum

/loutput: PE(0,j) receive SMA for day j

Let’s consider a special case as in [1] /I for simplicity we omit the detail of
when the data to be summed are in the
same row. By applying the similar
operation as prefix sum, we can get the
sum of data in O(logN) time. Step2 Diagonlization (Savlue)

handle day 0 to day j-1

Stepl Computer prefix sum on row 0

3.4 PrefixSum Step3 Setup row bus

Each PE holds a number in its A Step4 broadcast Svalue
variable.The prefix sum operation

computes the partial sum of each PE(i)
according to the following equation: where i==j

Step5 P[i,j] disconnect East switch,

Step6 P[i,j] broadcast Svalue, where i

PrefixSum(i) = A()) ==(j-n)

This operation can be done in O(logN) Step7 Tvalue = BusContent for P[i,j]

time. where i==j
Step8 SMA = Svalue — Tvalue

Step9 set up column bus

Step10 P[i,j] broadcast SMA, where
i==]

Stepll PEJO0,j] receive SMA

Figure 2. Computing Simple Moving
Average on RMESH

All steps except prefix sum operation takes
constant time. Because prefix sum takes
O(logN) time, so the total time complexity
is O(logN).

4.2 Exponential moving average on RMESH

Although the exponential moving average
can be computed by using the formula

EMA(t) = (P, — EMA(t — 1)) * a + EMA(t

We can rewrite the formula as the follows.

EMA(t) = aP, +a(1 —a)P_4
+ a(l - a)ZPt_z. e +a(1
- a)n_lpt—n+1

Let’s denote(1 — a) as . The above
formula will then become

EMA(t) = aP, + afP,_4
+ aB?P_,...+af P

The algorithm that computes the EMA is
listed as in Figure 3

/loutput: PE(0,j) receive EMA for day j

Stepl
Step2
Step3
Stepd
Step5

Step6

Step7

Step8

Step9
Step10
Stepll

PE[0,0] broadcast alpha
PE[0,0] broadcast beta

Setup column bus

Broadcast Pvalue[0,j]

P[i,j] compute(a * B *
Pvalue), where i<=j

if (i==j) PE[I,j] disconnect E-
switch

Setup row bus

Perform DataSum from PE[I,0]
to PE[L,j], where i==j, put
result in DS

set up column bus

P[i,j] broadcast DS, where i==j
PE[0,j] receive DS and put it in
EMA (EMA[0,j] = DS)

Figure 3 Computing Exponential Moving
Average on RMESH

In Step5, each individual term in the EMA
formula is calculated as shown in Figure4.

EMA (n)
/lcompute n day Exponent moving average on
/I RMESH
/linput: PE(0,j) contains the closing price Pvalue

[[for day j

a Row 0
af?! a Row 1
apB? apt a Row 2
ap? aB? apt a Row 3
af? ap? af? apt a Row 4

(a) Populate a and f

Figure 4(a). Computing of a * ¢ * Pvalue

a Row 0
Pyapt Pa Row 1
Pyaf? Papt Pa Row 2
PyapB® P,ap? Pyaf?t P;a Row 3

PaB* | Piap® | P,aB* | Pap? P,a | Row4

(b) Prepare the term a * ¢ * Pvalue for
step8 DataSum

Figure 4(b). Computing of a * B¢ * Pvalue

It is easy to verify that all steps take constant
time except Step8 which takes O(logN) time.
Therefore the total time complexity for
computing exponential moving average on
RMSEH is O(logN) time.

5. CONCLUSION REMARKS

In this paper, the computation of two moving
averages on RMESH was developed. The
Simple moving average which treats all past n-
day stock closing prices equally important in
calculating today’s moving average. The
Exponential moving average assigns more
weights for most recent day and least weight for
least recent day. Both of these two algorithms
perform the same time complexity which are
both in O(logn). Question is can we do better
than O(logN) time?

6. REFERENCES

[1] J. Jeng and S. Sahni, “Reconfigurable Mesh
Algorithms ~ for Fundamental Data
Manipulation Operations”, Computing on
Distributed Memory Multiprocessors,
NATO Series F, Ed. F. Ozguner, Spring
Verlag, 1993, pp 27-46

[2] John Jenq, "Parallel Implementation of
Moving Averages and Stock Market
Prediction”, by John Jeng, 2012
International Conference on Parallel and
Distributed Processing Techniques and
Applications, pp 833-837

[3] R. Miller, V.K. Prasanna Kumar, D. Reisis,
and Q.F. Stout, Parallel computations on
reconfigurable meshes, IEEE Transactions
on Computers, vol. 42, no. 6, June 1993,
pp. 678-692.

[4] Edward Tirados and John Jeng, "Analysis of
Leading Economic Indicator Data and
Gross Domestic Product Data Using
Neural Network Methods", Journal of
Systemics, Cybernetics and Informatics,
vol 7, no 4, 2009, pp 51-56

[5] Yixin Zhou, and Jie Zhang, "Stock data
analysis based on BP neural network",
2010 Second International Conference on
Communication Software and Networks,
pp 396 - 399

