
Parallel Implementation of Moving Averages on RMESH

John JENQ

Computer Science Department

Montclair State University

Montclair, New Jersey, USA

ABSTRACT
Moving averages are important financial

indicators. There are short term moving average

and long term moving averages. The interaction

of the short term moving averages and long term

averages give analyst the good clues about the

direction of future assets performance. In this

paper, the computation of two popular moving

averages are discussed. The n-day simple

moving average treats all past n days’ closing

prices equally while the n-day exponential

moving average assigns more weight to most

recent day and least weight to lease recent day

closing price when form the computation

formula. Both methods can be done in O(logN)

time on the Reconfigurable Mesh.

Keywords: moving average, parallel

processing, high performance computing.

Reconfigurable mesh

1. INTRODUCTION

Moving averages can be used as financial

indicators. The indicators are essential for

companies and financial firms to predict and

forecast the future performance of certain

companies and stocks. See [4] for example.

There are various types of moving averages. The

two most popular moving averages are simple

moving average and exponential moving

average.

Assuming the daily closing price for day t is .

The n-day simple moving average can be

defined as ()
∑

, where is the

closing price at day i. The simple moving

average can be computed by taking the average

closing price of a stock, over the last N periods.

Some of the popular simple moving averages are

5, 10, 20, 40, and 200. The 5-day and 10-day

averages are considered as short term average

while the 200-day average will be considered as

long term average. The crossing of the long term

and short term averages can be used by some

investor as market indicators to buy or sell

stocks. Let's assume the last ten periods for a

stock are 1, 2, 3, 4, 5, 6, 7, 8, 9,and 10 then the

10 day simple moving average can be computed

as (1+2+3+4+5+6+7+8+9+10)/10 = 5.5. While

simple moving average giving all past n-day

closing price equally weight, the n-day

exponential moving average assign more weight

to recent price.

Exponential moving average can be defined as

 () (()) (

), where is closing price at day t. The is

weighting factor and can be defined as

 (), where n is the number of time

periods involving in the computation. For

example, for 10-day , ()

 . While 20-day , (

) .

In [5], Zhou and Zhang used financial indicators

such as moving averages, volumes, Relative

strength index, etc. on neural network to predict

future stock price. In [2], Jenq proposed

computation of SMA and EMA in order to be

used in stock market prediction run on a neural

network using GPU.

The rest of the paper was organized as the

following. Section 2 discusses the

Reconfigurable Mesh architecture, Section 3

discussed the basic operations that will be used

as building blocks to construct our algorithms to

compute simple moving average and exponential

moving average. Section 4 discuss the

implementation of both simple moving average

and exponential moving average on RMESH.

The time complexity for both algorithms are also

discussed. Section 5 concludes this report.

2. PRELIMINARIES ON

RECONFIGURABLE MESH WITH

BUSES (RMESH)

The particular reconfigurable mesh architecture

that we use in this paper is called RMESH[3]. It

employs a reconfigurable bus to connect

together all processors. Figure 1 shows a

244  RMESH. By opening some of the

switches, the bus may be reconfigured into

smaller buses that connect only a subset of the

processors.

The important features of an RMESH are:

a. An LMN  RMESH is a 3-

dimensional mesh-connected array of

processing elements (PEs). Each PE in

the RMESH is connected to a broadcast

bus, which is itself constructed as an

LMN  grid. The PEs are connected

to the bus at the intersection of the grids.

Each PE manages up to six bus switches

(Figure 3) that are software controlled

and can be used to reconfigure the bus

into sub buses. The ID of each PE is a

triple (i , j, k) where i is the row index,

j is the column index and k is the plane

index. The ID of the upper left corner

PE on plane zero is (0,0,0) and that of

the lower right one is (N-1,M-1,0).

b. There are up to six switches associated

with a PE and are labeled as E (east), W

(west), S (south), N (north), B(back),

and F(front). Notice that the east (west,

north, south, back, front) switch of a PE

is also the west (east, south, north, front,

back) switch of the PE (if any) on its

right (left, top, bottom, back, front).

Two PEs can simultaneously set

(connect, close) or unset (disconnect,

open) a particular switch as long as the

settings do not conflict. The broadcast

bus can be subdivided into subbuses by

opening (disconnecting) some of the

switches.

c. Only one processor can put data onto a

given sub bus at any time

d. In unit time, data put on a subbus can be

read by every PE connected to it. If a PE

is to broadcast a value in register I to all

of the PEs on its subbus, then it uses the

command broadcast(I).

e. To read the content of the broadcast bus

into a register R, the statement R =

content(bus) is used.

f. Row buses are formed if each processor

disconnects (opens) its S switch, B

switch, and connects (closes) its E

switch. Column buses are formed by

disconnecting the E, and B switches and

connecting the S switches. Similarly, Z

buses can be formed by connecting F(or

B) switches and disconnecting E and S

switches. While the plane buses can be

formed by disconnecting B switch only.

Figure 1 a 4 x 4 x 2 RMESH

Processor

Switch

: Link

3. BASIC DATA MANIPULATION

OPERATIONS

The following are operations which will

serve as the building blocks to form our

algorithms to solve the moving average

problem. You can find the more detailed

discussion in [3], [1].

3.1. Broadcast

In a data broadcast operation, data

originated in one PE are sent to the

remaining N -1 PEs, where N is the

total number of PEs in the RMESH

network. This operation takes O(1)

time.

3.2 Diagonalization

This operation will diagonalize a row

(column) of elements, by which we

mean moving a specific row (column)

elements to diagonal positions with

respect to that row (column). With the

RMESH bus, this operation can be done

in O(1) time.

3.3 DataSum

Let’s consider a special case as in [1]

when the data to be summed are in the

same row. By applying the similar

operation as prefix sum, we can get the

sum of data in O(logN) time.

3.4 PrefixSum

Each PE holds a number in its A

variable.The prefix sum operation

computes the partial sum of each PE(i)

according to the following equation:

 () ∑ ()

This operation can be done in O(logN)

time.

4. COMPUTATION OF MOVING

AVERAGE ON RMESH

In this section, we will discuss both the

computation of simple moving average and

exponential moving average.

4.1 Simple moving average on RMESH

The main operation in computation of

simple moving average is to calculate the

prefix sum. By using the prefix sum

operation, the N-day Simple moving average

of day "i" can be calculate as

 SMA[i] = (prefixSum[i] – prefixSum[i-N])/N

The following is the step by step detailed

algorithm that compute SMA in RMESH

SMA (n)

//compute n day simple average on

RMESH

//input: PE(0,j) contains the closing

price Svalue for day j

//output: PE(0,j) receive SMA for day j

// for simplicity we omit the detail of

handle day 0 to day j-1

Step1 Computer prefix sum on row 0

Step2 Diagonlization (Savlue)

Step3 Setup row bus

Step4 broadcast Svalue

Step5 P[i,j] disconnect East switch,

where i==j

Step6 P[i,j] broadcast Svalue, where i

==(j-n)

Step7 Tvalue = BusContent for P[i,j]

where i==j

Step8 SMA = Svalue – Tvalue

Step9 set up column bus

Step10 P[i,j] broadcast SMA, where

i==j

Step11 PE[0,j] receive SMA

Figure 2. Computing Simple Moving

Average on RMESH

All steps except prefix sum operation takes

constant time. Because prefix sum takes

O(logN) time, so the total time complexity

is O(logN).

4.2 Exponential moving average on RMESH

Although the exponential moving average

can be computed by using the formula

 () (()) (

)

We can rewrite the formula as the follows.

 () ()
 () (

)

Let’s denote() . The above

formula will then become

 ()

The algorithm that computes the EMA is

listed as in Figure 3

EMA (n)

//compute n day Exponent moving average on

// RMESH

//input: PE(0,j) contains the closing price Pvalue

//for day j

//output: PE(0,j) receive EMA for day j

Step1 PE[0,0] broadcast alpha

Step2 PE[0,0] broadcast beta

Step3 Setup column bus

Step4 Broadcast Pvalue[0,j]

Step5 P[i,j] compute(

), where i<=j

Step6 if (i==j) PE[I,j] disconnect E-

switch

Step7 Setup row bus

Step8 Perform DataSum from PE[I,0]

to PE[I,j], where i== j, put

result in DS

Step9 set up column bus

Step10 P[i,j] broadcast DS, where i==j

Step11 PE[0,j] receive DS and put it in

EMA (EMA[0,j] = DS)

Figure 3 Computing Exponential Moving

Average on RMESH

In Step5, each individual term in the EMA

formula is calculated as shown in Figure4.

 Row 0

 Row 1

 Row 2

 Row 3

 Row 4

(a) Populate α and β

Figure 4(a). Computing of

 Row 0

 Row 1

 Row 2

 Row 3

 Row 4

(b) Prepare the term for

step8 DataSum

Figure 4(b). Computing of

It is easy to verify that all steps take constant

time except Step8 which takes O(logN) time.

Therefore the total time complexity for

computing exponential moving average on

RMSEH is O(logN) time.

5. CONCLUSION REMARKS

In this paper, the computation of two moving

averages on RMESH was developed. The

Simple moving average which treats all past n-

day stock closing prices equally important in

calculating today’s moving average. The

Exponential moving average assigns more

weights for most recent day and least weight for

least recent day. Both of these two algorithms

perform the same time complexity which are

both in O(logn). Question is can we do better

than O(logN) time?

6. REFERENCES

 [1] J. Jenq and S. Sahni, “Reconfigurable Mesh

Algorithms for Fundamental Data

Manipulation Operations”, Computing on

Distributed Memory Multiprocessors,

NATO Series F, Ed. F. Ozguner, Spring

Verlag, 1993, pp 27-46

[2] John Jenq, "Parallel Implementation of

Moving Averages and Stock Market

Prediction", by John Jenq, 2012

International Conference on Parallel and

Distributed Processing Techniques and

Applications, pp 833-837

[3] R. Miller, V.K. Prasanna Kumar, D. Reisis,

and Q.F. Stout, Parallel computations on

reconfigurable meshes, IEEE Transactions

on Computers, vol. 42, no. 6, June 1993,

pp. 678-692.

[4] Edward Tirados and John Jenq, "Analysis of

Leading Economic Indicator Data and

Gross Domestic Product Data Using

Neural Network Methods", Journal of

Systemics, Cybernetics and Informatics,

vol 7, no 4, 2009, pp 51-56

[5] Yixin Zhou, and Jie Zhang, "Stock data

analysis based on BP neural network",

2010 Second International Conference on

Communication Software and Networks,

pp 396 - 399

