

A Novel Design for Smart App Firewall Framework

Hesham F. Ali

Computers and Systems Department, Electronics Research Institute,

Cairo, Egypt.

 hesham@eri.sci.eg

Bassem A. Abdullah
Computer and Systems Engineering Department, Ain Shams University,

Cairo, Egypt.

babdullah@eng.asu.edu.eg

Atheer Mostafa
CIO, Starware

Cairo, Egypt

Atheer@startware.net

ABSTRACT

The big and continuously developing web sites, tens of

thousands of them redeveloped their code considering

secure coding with more interest although this still was

not still enough because a single critical vulnerability in

a single line in a single page could lead to full website

hack and all information disclosure.

In this paper we propose a system aiming to design

application for firewall, depending on using the

learning based whitelist rules in addition to the classical

method of using black list rules. The concept was

evaluated by generating these white rules manually and

showed excellent performance when tested in websites

of STARWARE company clients who involve high

traffic daily like “Youm7” Press. In this paper, we

target applying an artificial intelligent learning engine

such as Artificial Neural Network (ANN), Support

Vector Machines (SVM), etc to automate updating the

rules of the whitelist extending the concept proved in

our commercial platform.

The proposed application is targeting enhancing the

system performance by minimizing the traffic with

percent more than 90% from internet traffic and web

page download time will be reduced by more than 50%.

The filters to be build is targeting better detection with

more than 50% with respect to the running today filters

applying on more 10K rules.

Keywords: Blacklist, Whitelist, Neural network, DNS,

Firewall, Varnish, Reverse Proxy.

1. INTRODUCTION

Almost all -even big and famous- websites and services

till now have been hacked several times. Recently,

website hackers have begun to develop attacks that

target vulnerabilities in the business logic, rather than

in the code itself. Business logic attacks are often not

looked upon as security risks but hold serious business

implications for website owners because they generally

remain undetected [1].

The well-known brands firewalls and expensive

network security devices are not able to cover this

aspect because all these vulnerabilities are standing in

the application layer; the seventh layer in Open

Systems Interconnection (OSI) model, and are very

hard to detect without fully understanding the logic of

the developer while being able to control successfully

up to the fifth layer in the network OSI model.

The most common example of this is comment spam.

This is where hackers insert automatically generated

comments into a blog or online forum, directing people

to bogus sites that promote bogus pharmaceuticals

when it's actually malware. The implications of such

attacks can range from degradation in your company’s

search engine rankings to being blacklisted and

completely removed from search results. So, all data

used by the website (from users, other servers, other

websites and internal systems) must be validated for

type (e.g. numeric, date, string), length (e.g. 200

characters maximum, or a positive integer) and syntax

(e.g. product codes begin with 2 letters and are

followed by 5 digits) and business rules (e.g. televisions

can only cost between 2000 EGP and 8000 EGP, an

order can contain at most 20 items, daily credit limit

must not be exceeded). All data written as output

mailto:hesham@eri.sci.eg
mailto:bamin@tiec.gov.eg
mailto:Atheer@startware.net

(displayed) needs to be safe to view in a browser, email

client or other software and the integrity of any data

that is returned must be checked [2].

Our solution is based on the growing and widely used

caching platform “Varnish”. It's well tested and open

source for extension and development. We can

implement the system in matrix of any clustered servers

to provide a cloud based matrix and could be

distributed geographically. This will make the solution

great stable and performance efficient to perform in

high volume traffic with least costs. With the use of one

of a famous artificial intelligent engine such as neural

network, it will receive the output of the “Varnish” and

generate whitelist rules.

In this paper, Section 2 will give an overview for the

history and state of the art of the web site security

models, Section 3 will represent the proposed system

and section 4 will give the conclusion.

2. HISTORY AND STATE-OF-THE-ART

Most of the critical hacking techniques are based on

sending commands within data parameters to the web

page considering that data inputs will be concatenated

later with developer commands to be executed, this is

very clear in SQL Injection, Cross Site Scripting, File

Inclusion, Buffer Over Flow, Command Execution …

etc

On 2003 we considered building a library through an

intelligent security code review application to fix the

SQL Injection vulnerability specially and replace all

input reading inside the ASP code with a security

developed library to filter all parameters based on

their log of behaviour. The first mode of this security

library is logging mode, in which the parameters values

are logged and saved in a specific database for some

time of using the site pages all features. Then a filter

generator will be used to analyze the log database and

output specific filtration rules in Visual Basic syntax to

be added into the security library and compiled as a

DLL. The last step is to bind this DLL with the ASP

website, and run the security library in filtration mode

using the DLL filters for all parameters that learned,

and apply a basic security for the parameters that are in

new pages to be logged and added for next use of the

security hardening process to add the new parameters

rules. Basically the rules were considering parameters

data types validation to protect numeric parameters

from SQL Injection, and also protect string parameters

being escaped by a single quote for SQL Injection too.

Simple rules for file inclusion are applied manually to

the rules DLL.

On 2011 STARWARE (as a company) started

implementing Cloud Cache servers to provide

performance and basic security; that is based on

Reverse Proxy technology on external system/servers to

provide simple static and dynamic content caching

rules written in VCL language to be used in Varnish

system as a reverse proxy to the original servers.

Varnish – as an open source reverse proxy - converts

VCL rules to C++ to be compiled as binaries on the fly

for very fast execution in memory that enables

processing 10,000 to 40,000 requests per second. The

main need to this solution was for performance,

stability and basic security including a Blacklist

parameter filtering in VCL to the Varnish

configurations to protect and block the direct and

common cases of SQL Injection specially used by tools

and vulnerability scanners.

The blacklist model is to exclude and filter the

keywords and patterns used commonly in exploiting a

security vulnerability, this requires including all

keywords and functions and special function in all

version used in the database management system. As

example, there are hundreds of MySQL functions, other

hundreds in SQL Server, others for Oracle, and

PostgreSQL …etc. There are usually hundreds of Filter

Evasion and Filter Bypassing techniques and tricks on

the web; that's why blacklisting is not efficient enough

for security against hackers (this can prevent only script

kiddies hackers that are using tools without security and

development knowledge).[3-6]

Fig. 1. Diagram for the whitelist Firewall

The Whitelist model is more efficient and this is the

model that already implemented while configuring

Network Firewalls [7-8], but implementing it in IDS

(Intrusion Detection Systems) or IPS (Intrusion

prevention system) is so difficult to implement because

it requires very detailed and professional rules writing

in Regular Expressions which, usually requires a skilled

professional with development background to write

these rules with cooperation with web application

developer. This is not flexible and requires a lot of time

and efforts and requires dedication of the developer

with the security professional for this task which is not

practical and sometimes impossible after handing over

of the development company, also it is impossible in

compiled and closed code sites to make this kind of

security enhancements by whitelisting in most cases

and will result in several issues of incorrect

configurations that are hard to debug and troubleshoot.

Fig. 1 gives a brief view about whitelist firewall.

3. THE PROPOSED SYSTEM

The proposed system is targeting to automate the rules

writing, which requires well knowledge of the

parameters (including cookies) in many tracks; the data

types, the data length, output structure, output format

and output size. In actual web site usage of learning is

similar to the basic idea that we implemented simply 10

years ago in the ASP and DLL case, but in more

advanced and professional engineering technology.

We can basically write parameters logging to “Varnish”

in the learning mode. In this mode we test all site

services with normal traffic usage, and then apply this

log over a modern machine learning technique to define

page specific and parameter specific rules and write

their related VCL rules file. Next, implement this file as

a security configuration for this web site. The

parameters will be validated and filtered in the ordinary

“Varnish” fast processing without effect on the original

application code or without performance impact. On the

other hand, we will gain great performance and high

availability features.

Fig 2. Represents a simple comparison between the

classical flow between any internet user with any web

site with respect to the process between any internet

user and any website but within the control from the

smart app firewall system

Fig 2: System layout with Smart app firewall versus

Classical firewall

The proposed system is composed mainly from 3

phases:
Phase 1: User request analysis.

Phase 2: Controller and Reverse proxy.

Phase 3: Rules generation and Learning.

The system workflow is as follows:

Phase 1: User request analysis

1. User request will be received by smart app

firewall.

2. The request will be redirected through Geo-DNS

to the cloud network.

Phase 2: Controller and Reverse proxy

3. Cloud network will route the request to the

“Varnish” reverse proxy.

4. “Varnish” controller will apply the Whitelist and

Black list rules:

a. Approved request : go to the requested

web server

b. Not approved: block and send to web

interface as alert of hack attempt to be

displayed to the security monitoring

specialist.

5. If the request is from trusted IP, the controller

will send it to the learning module.

Phase 3: Rules generation and Learning.

6. The learning module will analyze the request

using machine learning techniques.

7. The learning module will generate whitelist

rules.

8. The resulted rules will update the application

firewall whitelist rules.

Fig. 3 gives a summary to the workflow for a user

request as described above.

Fig 3: Smart App FW flow

For the whitelist rule engine, the neural network or the

SVM used will learn from a trusted user behavior to

build a whitelist that will be the source of the rules while

the blacklist will remain to be the same used by

traditional app firewall. In case of using SVM, one of

kernels commonly used like Radial Basis Function

(RBF) might be used benefiting from its ability of

modeling non-linear models [13].

The proposed research in learning is based on:

 Using Neural Networks [9-11], Support Vector

Machines (SVM) [12-14] to build a whitelist

rules learning model and other machine

learning techniques.

 Comparing between the performances of the

machine learning techniques and select the

appropriate technique.

 Propose a new learning model if needed that

fits the learning of the rule generation phase.

4. CONCLUSION

Implementing machine learning technique for the user

usage analysis will be more effective. Being easy to

implement external of the web server and even external

of the datacenter will enable it to be provided as a cloud

service for customers. Cloud Caching & Security is

already implemented and used to decrease the traffic

usage; this is provided as cloud service for web site

owners as CloudFlare or Incapsul and their services are

relatively expensive. These systems don't provide

learning security rules writing and implement very

primitive blacklists for their application firewalls. This

is also used by ISPs to reduce the external traffic usage

by caching the commonly used sites static content

(knowing that static content is about 90% or more of

the web page).

The proposed smart application firewall is enhancing

the system performance by minimizing the traffic with

more than 90% from internet traffic and web page

download time is reduced by more than 50%. The

filters get better detection with more than 50% with

respect to running today filters applying on more 10K

rules.

5. REFERENCES

[1] “9 Things Businesses Need to Know About Web

Security”, http://mashable.com/

[2] “Top 10 website security issues”, Watson Hall

Ltd, 2009.

[3] http://www.bbc.co.uk/arabic/worldnews/2013/09/1

30929_uk_cyber_unit.shtml

[4] Ahmed Amin, H. Farouk,Ahmed Mahmoud, Heba

Aslan, “A Design for an FPGA Implementation

of RIJNDAEL CIPHER”, Journal of

Programmable Devices, Circuits, and Systems,

International Congress for Global Science and

Technology (ICGST), 2009.

[5] H. Farouk, A. Tobal, “An Efficient Detection and

Classification Method for Landmine Types

Based on IR Images Using Neural Network”,

International Journal of Geology, pp. 91-95, Issue

1, Volume 4, 2010.

[6] B. Abdullah, A. Younis and N. John, "Multi-

Sectional Views Textural Based SVM for MS

Lesion Segmentation in Multi-Channels MRIs,"

The Open Biomedical Engineering Journal, vol.6,

2012, pp. 56-72.

doi:10.2174/1874230001206010056

[7] https://www.owasp.org/index.php/Web_Applicatio

n_Firewall

[8] https://www.owasp.org/index.php/Category:OWA

SP_Best_Practices:_Use_of_Web_Application_Fir

ewalls

[9] B. Abdullah, A. Younis P.M. Pattany, and E.

Saraf-Lavi, "Textural based SVM for MS Lesion

Segmentation in FLAIR MRIs," Open Journal of

Medical Imaging, vol.1, pp. 16-42. doi:

10.4236/ojmi.2011.12005, 2011.

[10] Bassem A. Abdullah, A.A. Younis (UM-

ECE_team) in Workshop of "MS Lesion

Segmentation Challenge 08". Results accepted to

appear on the ranked online results on Oct. 10,

2011.

[11] Oliver Coleman, O.J., Blair A.D., “Evolving

Plastic Neural Networks for Online Learning:

Review and Future Directions”., Proceedings of

the 25th Australasian Joint Conference on

Artificial Intelligence (AJCAI'12), Sydney,

Australia, 2012.

[12] Guoqiang Peter Zhang “Neural Networks for

Classification: A Survey”, IEEE transactions on

systems, Man and Cybernetics part C: Applications

and Reviews, VOL. 30, NO. 4, NOVEMBER

2000.

[13] Chih-Chung Chang and Chih-Jen Lin, "LIBSVM:

A library for support vector machines", ACM

Transactions on Intelligent Systems and

Technology, vol. 2, no. 3, pp. 1-27, 2011, Software

available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] A Pozdnukhov and M Kanevski, "Monitoring

Network Optimisation for Spatial Data

Classification Using Support Vector Machines",

International Journal of Environment and

Pollution, vol. 28, 2006.

https://mail.mcit.gov.eg/owa/redir.aspx?C=73a9b68ff2ca4705bfe91ed4b86e58d7&URL=http%3a%2f%2fmashable.com%2f
http://www.bbc.co.uk/arabic/worldnews/2013/09/130929_uk_cyber_unit.shtml
http://www.bbc.co.uk/arabic/worldnews/2013/09/130929_uk_cyber_unit.shtml
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls
http://www.csie.ntu.edu.tw/~cjlin/libsvm

