
A Step by Step Guide to Building Secure Software

Mini ZENG

 Department of Computer Science, the University of Alabama in Huntsville

Huntsville, AL 35899, USA

and

Feng ZHU

Department of Computer Science, the University of Alabama in Huntsville

Huntsville, AL 35899, USA

ABSTRACT

Software vulnerabilities have become widespread in recent

years. Multiple research organizations have published common

software security errors. It is, however, overwhelming for

developers to read through the long documentations. There are

few studies on how to educate developers use these research

resources. We suggest a step-by-step approach for programmers

and designers to mitigate security errors. Our approach guides

developers to generate an error list, prioritize errors by risk

evaluations, target security errors in source code, test attack,

establish mitigation strategy, and document the results. We

provide a case study to illustrate the approach and established

mitigation strategies by using the 2011 CWE/SANS Top 25

Most Dangerous Software Errors. We present examples,

determine the priorities for the fixes, and mitigate errors. We

evaluate the method by surveys and experiment. Result shows

that the step by step guide and case study training could

increase participants’ motivation to use CWE resources and

perform software security developing steps.

Keywords: Secure, Software design, Error handing and

recovery.

1. INTRODUCTION

On-line applications involving financial and personal data are

now in wide use. Many of these, such as online banking, auto-

insurance, and health insurances, are critical and frequently

become the target of attackers [1]. Even web applications that

use non-confidential data can contain and spread malware.

Software developers may neglect security concerns. This is

common as developers are focusing on functionality. Software

vulnerabilities reported by Common Vulnerabilities and

Exposures (CVE) [2] from 1999 through January 2015 show a

clear and pressing need for software developers to learn and

incorporate secure software development practical procedures.

Research Organizations have created numerous resources for

software security issues, such as Common Weakness

Enumeration (CWE), the Open Web Application Security

Project (OWASP), and a Software Assurance Forum for

excellence in code (SAFECode). In 2009, 2010, and 2011,

CWE published three versions of the CWE/SANS Top 25 Most

Dangerous Software Errors. In 2014, CWE published the latest

CWE report, Version 2.8, which included a thousand errors and

error categories [3]. OWASP Software Assurance Maturity

Model Project specified a framework for the design and

development of secure software [4]. The OWASP Development

Guide provides practical instructions and J2EE, ASP. NET and

PHP code samples [5]. SAFEcode published two versions of

secure development practices with an analysis of real-world

actions [6]. SAFEcode and Cloud Security Alliance released a

guide to help readers better understand and implement best

practices for secure cloud applications' development [7]. CWE

and OWASP, for instance, provide a large amount of resources

on security errors and software vulnerabilities discovered each

year. While these research resources are valuable, developers

may be overwhelmed by the amount of documentation and

number of error lists and not willing to use them in their

practical developing. In addition, few resources are available to

teach developers on how to estimate tradeoffs between

mitigating security errors, and development and testing (such as

time, labor, etc.).

In this paper, we propose a progressive approach and use a case

study to train software developers on target and mitigate

security errors. We use the 2011 CWE/SANS Top 25 Most

Dangerous Software Errors as a guide. One of our major goals

is to introduce a step-by-step procedure for programmers and

designers to solve security-related issues in their code and

design. This approach reduces complexity by splitting the whole

approach into smaller, easier-to-handle processes.

To illustrate this method in a practical procedure, our discussion

will focus on a simple but fully functional application named

ShareAlbum. This application was developed by three students

with good programming skills. Two of them were in a team that

won first place in regional and the Popular Choice Award in the

global competition at the America's Datafest 2013. The whole

project source code can be downloaded from our website [8] for

practice.

This paper makes two main contributions. First, we provide

integration between research resources from CWE, teaching

developers target and fix software security issues by a step by

step guide and a practical example (ShareAlbum). Second, we

introduce a method to prioritize security errors, which is named

S-value. S-value provides an overall evaluation of remediation

cost, attack frequency, ease of detection and attacker awareness.

S-value can provide flexibility to software development teams

by prioritizing the errors according to their situation.

The rest of the paper is organized as follows. We discuss the

background and related work in Section 2. Then, we describe a

method to find and fix security errors in Section 3. In Section 4,

we use ShareAlbum as a case study to mitigate errors. We

evaluate our method in Section 5. And finally in Section 6, we

give concluding remarks.

57

Proceedings of IMCIC - ICSIT 2016

2. BACKGROUND AND RELATED WORK

In this section, we provide background information about CWE,

2011 CWE/SANS Top 25 Most Dangerous Software Errors.

We also specify tools that developers can use to detect errors

and related work that OWASP and SAFEcode did in recent

years.

CWE is a community developed repository of software

weakness types that is useful in all stages of development and

design [9]. Software managers can incorporate software

weakness analysis as part of their process. Programmers can

find weaknesses in their source code. And, customers can use

this list to check the security of software they purchased.

Researchers in software security can focus their researches

toward the specific vulnerabilities enumerated within.

The 2011 CWE/SANS Top 25 Most Dangerous Software Errors

is a list of the most severe and common software errors. These

errors are based on more than 800 programming errors, design

errors and architecture errors which could lead to serious

vulnerabilities [10]. The errors are scored and ranked on the

Common Weakness Scoring System (CWSS) [10].

CWE specifies weakness prevalence, consequence, level of

remediation cost, ease of detection, attack frequency and

attacker awareness for each error. According to CWSS rank, the

highest score is given to improper neutralization of special

elements used in an SQL Command (‘SQL’ injection). This

error has high weakness prevalence, low remediation cost, easy

level of detection, and high attacker awareness. The

consequences of ‘SQL’ injection are data loss and security

bypass. The second most dangerous software error is improper

neutralization of special elements used in an OS command (OS

command injection). This error costs more to remediate than the

‘SQL’ Injection error. It also has high attacker awareness and is

easy to detect. Buffer overflow comes in the third. This is a

widespread error that leads to malicious code execution, denial

of service and data lose [10].

Detection methods and effectiveness are listed under Technique

Details on the CWE website [11]. Demonstrative examples

include remediation code that could help programmers

understand each error in multiple language environments. The

Potential Mitigation section describes mitigation strategies. The

Monster Mitigations section provides guidance to software

managers to help them find out approaches to alleviate security

software errors in their project. Analysis of weakness

prevalence, remediation cost, ease of detection, consequences,

attack frequency, and attacker awareness for each error could

help software managers decide which error to address first.

There are many automated tools to help programmers locate

errors. Static and Dynamic analyses are two of the most popular

types of security test. Static analyses tools discover security

errors without running the program. Open source static analysis

tools include PMD for Java, FlawFinder for C/C++, Microsoft

FxCop for .NET and RIPS for PHP [12]. Coverity provides

static analyses tools for C, C++, Java and C# [13]. Dynamic

analysis tools examine software by executing the program and

observing system memory, functional behavior, response time

and overall performance [14]. Dynamic analysis tools such as

QAInspect, WebInspect, HP Security Suite and IBM Security

AppScan provide security solutions targeted toward different

stages of the development lifecycle . Veracode provides both

Static Application Security Testing and Dynamic Application

Security Testing [15]. Attack surface tools like Attack Surface

Analyzer(Microsoft) helps developers view changes in the

attack surface resulting from the introduction of their code onto

the Windows platform [16]. Fuzz testers such as Zzuf, Peach

and Radamsa aim to detect errors in the program code but do

not rely on previously known vulnerabilities [6]. Web

application vulnerability scanners such as Nmap can provide

vulnerability data, asset information and threat detection [17].

James Walden and Maureen Doyle developed an indicator

named SAVI (Static-Analysis Vulnerability indicator) to

evaluate web application security risks on the basis of static

analysis of source code [18]. However, these tools aren’t

perfect. They are struggling to balance false-positive warnings,

which reports defect-free problems in code and false-negative

problems [19].

OWASP is a free and open software security community. Their

“Top 10” is an awareness document for web application

security. The latest OWASP Top 10 are: Injection, Broken

Authentication and Session Management, Cross-Site Scripting,

Insecure Direct Object References, Security Misconfiguration,

Sensitive Data Exposure, Missing Function level Access

Control, Cross-Site Request Forgery, Using Components with

known Vulnerabilities, Invalidated Redirects and Forwards

[20]. OWASP provides verification method, attack scenarios

example and prevention method for each security risk.

SAFECode is a global non-profit organization. Their main goal

is to identify and promote best practices for developing and

delivering more secure and reliable software, hardware and

services [21]. In 2011, SAFECode published the latest version

[6] of security practices. SAFEcode best practices help

developers provide stronger controls and integrity for

commercial applications [6]. The best practices are applied

during the design, programming and testing phases. SAFECode

includes methods and tools to verify each practice, mitigation,

and CWE references for each practice listed. In 2013,

SAFECode provided additional secure development

recommendations in the context of critical threats to cloud

computing [7].

3. METHODOLOGY

Based on the CWE Top 25 Most Dangerous software Errors we

developed a step-by-step approach for location and resolution of

software errors. Figure 3 and following paragraphs describe

each step of this solution.

Step 1 Generate raw error list. Software managers or

developers should decide on using automated detection methods

or manual static analysis to create a raw error list. If automated

detection methods are used it will generate a list of errors after a

scan. We will use this list as a raw error list. Sometimes, manual

static analysis may be a more desirable solution to provide

sufficient code coverage because it could reduce false-positive

alarms and adapt to limited time constraints. For manual static

analysis, developers should go through the brief list of Top 25

Most Dangerous Software Errors and identify potential software

errors. If an error name is hard to understand, click the error ID

to get a detailed description. Compare the applicable platform

with language and technology of the software. Eliminate the

ones which are not fit. Then establish a raw error list with

potential errors.

58

Proceedings of IMCIC - ICSIT 2016

Step 2 Risk evaluations. Developers should use the following

sub-steps to evaluate each error in the raw error list.

 Check the CWE summary (red box 1 in Figure 1) for

level of attacker awareness, attack frequency, remediation

cost and ease of detection and then tabulate them (as

shown in Table 2 in section 4).

 Discuss the errors with software managers to determine

the significance and assign weights to them in a tabulated

form (as shown in Table 1 section 4). For example, if

budget is a main limitation, software managers should

assign higher weight for remediation cost. Other

constraints may also be considered. For example, if the

release date is coming soon, weight on ease of detection

should be more than others.

 Calculate S-value and order errors by descending S-value.

Details of S-value calculations will be presented in

section 4. Based on S-value, group the errors. The first

group will contain errors with highest S-value and will

need to be fixed immediately. The second and the third

group will contain errors which will be solved in future

releases. The reason that we group these errors is that in

the software engineering context, developers cannot

mitigate all the security errors in their first release. In

most cases, software developing teams may have pressure

of release date, so they will need to fix the security issues

categorized as catastrophic and critical with frequently

appearance in code [22].

Step 3 Errors code targeting. For each error, a developer

should check code examples (red box 2 in Figure 1) with the

corresponding programming language on the CWE website.

Detection methods (red box 3 in Figure 1) including

effectiveness will give developers a suitable method for

addressing a specific error. Automatic detection tools and
manual analysis tools have different solutions here.

 If an automated detection method is used, it already

provides a table that includes the error line number, file

name, error name and ID. Developers should select the

errors from this table based on risk evaluation. False-

positive errors will be eliminated by the following steps.

 If manual static analysis is used, developers should

review the software document first, classify code files

according to their functionalities and then identify the

category of functionality that may include the error code

based on code examples.

 Open a suspicious code file. Then, put the code file and

code examples side by side to target the lines of code

that include the security error.

Step 4 Attack and Mitigation. We tested each error in the

processing group by attacks to help developers understand the

errors. Developers don't have to test them by attacks in a

practical circumstance. They should design and implement

mitigation strategies for the errors. We use CWE-79 as an

example to illustrate a testing attack and an implementation of

mitigation strategy in section 4. (Detailed mitigation strategies

can be found on the CWE website in the code example part.)

More prevention and mitigation strategies on architecture,

design, operation and implementation are also listed on the

CWE website (red box 4 Figure 1). Developers decide

mitigation approaches, make appropriate changes on the lines of

code targeted in step 3 and go through all the project code to

mitigate errors in the first group.

Step 5 Documentation. The development team documents the

list of errors, the code files and functions which contain errors,

mitigation strategies and update timestamp.

If more time and budget are available, repeat step 3, step 4 and

step 5 for the second group of errors.

4. CASE STUDY

To illustrate the method represented in section 3, we will

discover and mitigate security errors on ShareAlbum. We chose

ShareAlbum because it has a fully functional application that

involves classic web operations such as uploading images and

videos, sending and receiving messages between users, user

registration, etc. It also requires private information which users

only want to share within a self-defined group. This web

application was developed by experienced developers, but many

typical security errors were there.

4.1 Reviewing ShareAlbum

ShareAlbum is used to share albums, photos and videos with

other users. This application uses PHP, HTML and MySQL.

The ShareAlbum database stores and keeps track of photos,

videos, photo-tags, users’ information, etc.

The albums and videos can be categorized as private or public

when they are created. Members have privileges to review,

make comments and tags on public photos and videos (Figure

2-a). Private photos and videos can only be reviewed by the

owner. Users can send messages to each other. Users will be

notified of new messages after they logged in. Every message

will contain the sender's ID, message content and send time

(Figure 2-b).

Figure 1 CWE software security error example [24].

(a) (b)

Figure 2 Screen shots of ShareAlbum

59

Proceedings of IMCIC - ICSIT 2016

4.2 Technique Details and Mitigation

We followed the method that was described in section 3. For

Step 1, we used manual static analysis. After going through the

brief list of Top 25 Most Dangerous Software Errors, we

generated a raw error list with nine errors: 1) CWE-22:

Improper Limitation of a Pathname to a Restricted Directory. 2)

CWE-79: Improper neutralization of input during web page

generation 3) CWE-89: Improper neutralization of special

elements used in an SQL command. 4) CWE-311: Missing

Encryption of Sensitive Data. 5) CWE-327: Use of a Broken or

Risky Cryptographic Algorithm. 6) CWE-434: Unrestricted

Upload of File with Dangerous Type. 7) CWE-759: Use of a

One-Way Hash without a Salt. 8) CWE-798: Use of Hard-

coded Credentials. 9) CWE-862: Missing Authorization. Then

we checked applicable platform of them on the CWE website.

Languages and architectural paradigm requirements of these

nine errors are all fit to ShareAlbum.

For Step 2, we evaluated security errors’ properties based on

time and budget limitations. These properties are remediation

cost, attack frequency, ease of detection and attacker awareness.

We then calculated the values as shown in Table 1.

According to the summary of each error in the raw error list, we

tabulated the level of remediation cost, attack frequency, ease of

detection and attacker awareness Table 2.

Then, we calculated the S-values base on these two tables using

Eq. (1).

Go through CWE Top 25

brief list
Raw Error List

Check Summary Weight Properties

Check Technique Details

Generate S-Value Table Group Errors

Target Error in code

Test Error By Attack Design Mitigation Strategy Remediate Error Code

Document

Next Group

Step 1 Generate raw error list

Step 2 Risk Evaluation

Step 3 Error code targeting

Step 4 Attack and Mitigation

More budget

and time?
Yes

Finish

No

Automated or

Manual analysis? AutomatedManual

Step 5 Documentation

Figure 3 Path to Fix Software Security Issues

Table 1 Value and weight for security error properties

Value

Weight

High/Often

Medium/

Moderate/
Sometimes

Low/

Easy

Remediation

Cost(WR=4)

VR=1 VR=2 VR=3

Attack

Frequency(WAF=3)

VAF=3 VAF=2 VAF=1

Ease of

Detection(WE=2)

VE=1 VE=2 VE=3

Attacker

Awareness(WAA=1)

VAA=3 VAA=2 VAA=1

Table 2 Property of each error in ShareAlbum

Remediation
Cost (R)

Attack

Frequency
(AF)

Ease of

Detection
(E)

Attacker

Awareness
(AA)

CWE-79 Low Often Easy High

CWE-89 Low Often Easy High

CWE-862

Low to

Medium Often Moderate High

CWE-434 Medium Sometimes Moderate Medium

CWE-798

Medium to

High Rarely Moderate High

CWE-331 Medium Sometimes Easy High

CWE-22 Low Often Easy High

CWE-759

Medium to

High Rarely Moderate High

60

Proceedings of IMCIC - ICSIT 2016

𝑆 − 𝑣𝑎𝑙𝑢𝑒 = 𝑉𝑅 × 𝑊𝑅 + 𝑉𝐴𝐹 × 𝑊𝐴𝐹

 +𝑉𝐸 × 𝑊𝐸 + 𝑉𝐴𝐴 × 𝑊𝐴𝐴 (1)

For example, CWE-79 with low remediation cost, often attack

frequency, easy detection and high attacker awareness will have

VR=3, VAF=3, VE=3, VAA=3 according to Table 1. While the

weight of remediation cost is WR=4, attack frequency is WAF=3,

ease of detection is WE=2, and attacker awareness is WAA=1.

According to the above formula, we can get an S-value=30 for

CWE-79. We calculated the S-value for all errors in Table 2,

then listed them by S-value in descending order. The final list in

our case is CWE-79 (S-value=30), CWE-89 (S-value=30),

CWE-862 (S-value=26), CWE-22 (S-value=26), CWE-434 (S-

value=20), CWE-331 (S-value=19), CWE-798 (S-value=16)

and CWE-759 (S-value=16).Then we grouped the ones with

higher S-value into the first group which consists of CWE-79,

CWE-89, CWE-862 and CWE-22. Higher S-value implies

relatively low remediation cost, high attack frequency, easy

detection and high attacker awareness. We will test attacks and

mitigate the errors in this group first. And then solve the other

four if time and budget allow.

For step 3, developers may download software documentation

and source code from our website. We reviewed document of

ShareAlbum to target these errors in files. Software Component

graph (Figure 4) could guide the manual static analysis process.

Then, we maped each error with file names as shown in Table

3.

For Step 4, we depicted code examples, attacks and mitigations

on error CWE-79, which has the highest S-value. On our

website, we provide technical details and mitigations on CWE-

89, CWE-862, and CWE-22 and discuss attacks and mitigations

for errors CWE-434, CWE-331, CWE-798 and CWE-759

existing in ShareAlbum.

CWE-79: Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') [23]. Attackers could inject

JavaScript or other browser executable script into a web page.

When our web page was loaded by other users, their browsers

could execute the malicious script attackers injected. Cross-site

Scripting can be detected by static analysis and dynamic

analysis. According to the discussion and description of CWE-

79 on CWE website, we can conclude that cross-site errors may

exist in ShareAblums code using HTTP GET parameters. And

these lines of code can be found in View_ablum.php and

View_public_album.php. The CWE-79 error in

View_public_album.php is illustrated in Figure 5 emphasized

by red underline.

Figure 5 Code example of CWE-79

These lines of code are used to view information of an album

with an album id as the headline. Line 14 in Figure 5 fetched

album id by using HTTP GET album_id parameter. Line 17

displays the album id by using the parameter defined in line 14.

Line 19 used to show the album name and description.

The view_public_album web page without attack should be like

Figure 3-a. An attacker may add the following lines in URL to

embed a fake login box in the web page.
https://ShareAlums.com/view_public_album.php?album_id=

%3Cdiv+id%3D%22stealPassword%22%3EPlease+Login%3A%3Cfor
m+name%3D%22input%22+action%3D%22http%3A%2F%2Fattack.e

xample.com%2FstealPassword.php%22+method%3D%22post%22%3

EUsername%3A+%3Cinput+type%3D%22text%22+name%3D%22use
rname%22+%2F%3E%3Cbr%2F%3EPassword%3A+%3Cinput+type

%3D%22password%22+name%3D%22password%22+%2F%3E%3Ci

nput+type%3D%22submit%22+value%3D%22Login%22+%2F%3E%
3C%2Fform%3E%3C%2Fdiv%3E%0D%0A

Once these lines are injected, the webpage loaded by a user will

execute the malicious script. The result is shown in Figure 6

where the red box shows the fake login form. Once the user

inputs password and username, then clicks login, this

information will be sent to the attacker. Complicate JavaScript

lines or other browser executable script could also be injected in

this way. Plenty of mitigation strategies could be used for the

Cross-site Scripting error. “Accept known good” input

validation strategy is suggested in the CWE website. To

mitigate the Cross-site Scripting, we should specify the variable

transfer between webpages. Line 14-19 in Figure 5 should be

changes to the lines in Figure 7-a. We checked the pattern of

album_id. In our case, album_id should have been numerical

Figure 4 Component graph of ShareAlbum

User Account Manage

User_func.php

Album Manage

Album_func.php

Photo Manage

image_func.php

Notify Manage

Notify_func.php
Video Manage

Video_func.php

Comment Manage

Comment_func.php

Tag Manage

Tag_func.php

Delete() Insert()Update() Get()

Table 3 Relationship between files and errors in

ShareAlbum
Errors Files

CWE-79 View_ablum.php,
view_public_album.php,

CWE-89 Notify_func.php
Image_func.php

Video_func.php

Album_func.php

CWE_862 Album_func.php
Image_func.php

CWE_434 Upload_image.php

Upload_video.php

CWE_798 Init.php

CWE_311 User_func.php

CWE_22 Image_func.php

Video_func.php

CWE_739 User_func.php

61

Proceedings of IMCIC - ICSIT 2016

(mitigation code shown in Figure 7 line 16-18), and the length

of album_id should not be more than 10 digits (mitigation code

shown in Figure 7 line 19-24). We provided corresponding

pseudo code shown in Figure 7-b to explain the lines of PHP

code in Figure 7-a.

5. EVALUATION

To evaluate our method, we recruited participants from

graduate level students from the computer science departments.

They were doing this as a homework project. We asked the

participants to read the guide and then target and mitigate the

secure errors in ShareAlbum. After they submit their report, we

ask them to complete a post survey. The procedures of the

experiment were approved by our university’s IRB.

We obtained responses from 29 participants with ages ranging

from 19 years to 45 years with a median age being 27 years

with 72.4% males and 27.6% females. The ethnic

diversification was as follows – 48.3% of participants were

Asian or Asian-American, 24.1% were Caucasian, 24.1% were

categorized themselves as others, 3.4% were African or

African-American and 0% of the participants were Hispanic,

Latino or Mexican-America. 20.7% of participants have more

than four years software development experience. 17.2% have

about 3 years’ experience. 24.1% have about 2 years’

experience. 6.9% have about 1 year experience. 6.9% have

about half years’ experience. And 24.1% have non experience

on software development. Participants claimed they are familiar

with following programming languages, C++ (86.2%), C

(82.7%), Java (68.9%), SQL (68.9%), Python (44.8%),

JavaScript (44.8%), PHP (20.7%), others (17.2%), and Ruby

(13.8%).

We asked students to answer comparison questions about their

behaviors on building secure software before training and after

training. These questions include 8 steps. Step 1, go through

CWE/SANS top 25 most dangerous software errors or any other

error list to find security errors. Step 2, prioritize security errors

to decide which one to remediate first. Step 3, reading

technique details of security errors to understand errors. Step 4,

consider security issues when in processes of coding

functionalities. Step 5, source code walkthrough after coding

process of functionalities. Step 6, use static analysis tools to

detect security errors, Step 7, architecture/design review for

security issues. Step 8, use dynamic analysis tools to detect

security error. Participants could choose from five levels of

frequencies for the steps, never as 1, almost never as 2,

sometimes as 3, frequently as 4, very often as 5. Figure 8 shows

that, before training, participants never or almost never pay

attention to the security coding errors. After training,

participants more frequently use the 8 steps discussed above

(between sometimes and frequently levels). Figure 8 also

showed that, after training, participants are willing to perform

step 4 and step 5 frequently. Step 1 and step 8 frequencies

increased more than other steps.

We also asked four questions about participants’ attitude on the

guide and case study. They were asked to choose from five

degrees of agreement (1 to 5 for strong disagree to strong agree)

for four sentences. “I understand the examples provided in

secure software development project on PSP website.” degree =

4.42). “The step by step method provided in secure software

development project on PSP website helped me to target and

Figure 6 Attack result with fake login form

Figure 8 Response result for steps building secure software

0

1

2

3

4

5

St
ep

1

St
ep

2

St
ep

3

St
ep

4

St
ep

5

St
ep

6

St
ep

 7

St
ep

 8

before training

after training

a. PHP code b. Pseudo code

Figure 7 Mitigation code example for CWE-79

62

Proceedings of IMCIC - ICSIT 2016

order the security error.” (Average degree = 4.11). And “I like

the way the secure software development project introduces

CWE/SANS Top 25 most dangerous software errors.” (Average

degree = 4.34).

In summary, the training increased participants’ motivation to

perform the eight secure software developing steps. After

training, participants are willing to consider security issues

when in processes of coding functionalities and source code

walkthrough after coding process of functionalities. The

training also significantly enhanced participants’ frequencies on

reading research resources about security errors and using

dynamic analysis tools to detect security errors. And

participants hold positive attitude on the step by step guide

training and case study. We also conducted other survey

questions and analysis. We will not discuss them in details,

because of the space limit.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a step by step methodology for

programmers and designers to make use of CWE research

resource to solve security-related issues. We provide a path for

developers to generate the raw error list, prioritize errors by risk

evaluations, target security error in source code, test attack,

establish mitigation strategy and document the solved errors.

We introduced S-value in risk evaluation to help developers

prioritize errors in the raw error list. The S-value is calculated

from weighted remediation cost, ease of detection, attack

frequency, attacker awareness. We trained developers by a web-

based application as a case study to find software security errors

and to provide mitigations based on the 2011 CWE/SANS Top

25 Most Dangerous Software Errors. In our case study, we

presented error code example, attack example, and mitigation

code example for CWE-79 which is the error with highest S-

value. The step-by-step approach we introduced separate the

complicate security errors targeting and mitigation process into

small and easy to follow steps. This approach could fill the gap

between software security researches and developers’ security

practice. On the other hand, S-value with flexible weight of

properties could be able to help developers balance efforts to

mitigate an error with resource (time and budget) limitation.

We are conducting more surveys and experiments to evaluate

our approach on two main aspects. First, we investigate the

impact of our step-by-step path in helping developers to use

existing resources. Second, we investigate the impact of S-value

in helping developers and software managers to prioritize errors

in a specific application instead of a general ranking. We also

educate developers to use this approach on automatic static

analysis tools and automatic dynamic analysis tools.

7. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation,

under grant 1220026 and grant 1043945.

8. REFERENCES

[1] A. Franklin, B. Sherrill, and B. Ivey, “IBM X-Force

2012 Trend and Risk Report,” Available at

https://www.ibm.com/ibm/files/I218646H25649F77/Risk

_Report.pdf, 2013.

[2] “CVE Vulnerabilities By Year,” 2015. Available at

http://www.cvedetails.com/browse-by-date.php.

[3] S. M. Christey, J. E. Kenderdine, J. M. Mazella, B. Miles,

and R. a Martin, “CWE report version 2.8.”

[4] OWASP, “Software Assurance Maturity Model,”

2013. Available at

https://www.owasp.org/index.php/Category:Software_As

surance_Maturity_Model#tab=OpenSAMM.

[5] “OWASP Development Guide,” 2005. Available at

https://www.owasp.org/index.php/Projects/OWASP_Dev

elopment_Guide.

[6] E. S. Simpson, M. Howard, M. Corp, and K. Randolph,

“Fundamental Practices for Secure Software

Development A Guide to the Most Effective Secure

Development Practices in Use Today,” Available at

http://www.scribd.com/doc/100731858/Writing-the-

Secure-Code, 2011.

[7] B. Sullivan, E. Bonver, J. Furlong, and S. Orrin,

“Practices for Secure Development of Cloud Applications

Table of Contents,” 2013 SAFECode & Cloud Security

Alliance, 2013.

[8] M. Zeng and F. Zhu, “Secure software development,”

Pervasive Lab UAH, 2015. Available at

http://pervasive.cs.uah.edu/PSP/content/secure-software-

development.

[9] “CWE Common Weakness Enumeration,” 2014.

Available at http://cwe.mitre.org/.

[10] “2011 CWE/SANS Top 25 Most Dangerous Software

Errors,” 2011. Available at

http://cwe.mitre.org/top25/index.html.

[11] “CWE-798: Use of Hard-coded Credentials,” 2011.

Available at

http://cwe.mitre.org/data/definitions/798.html.

[12] OWASP, “Static Code Analysis,” 2015. Available at

https://www.owasp.org/index.php/Static_Code_Analysis.

[13] “Coverity Code Advisor,” 2015. Available at

http://www.coverity.com/products/code-advisor/.

[14] M. D. Ernst, “Static and dynamic analysis: Synergy and

duality,” WODA 2003: ICSE Workshop on Dynamic

Analysis, pp. 24–27, 2003.

[15] Veracode, “Veracode Products,” 2015. Available at

http://www.veracode.com/products/.

[16] T. Rains, “Microsoft’s Free Security Tools – Attack

Surface Analyzer.” Available at

https://blogs.microsoft.com/cybertrust/2012/08/02/micros

ofts-free-security-tools-attack-surface-analyzer/.

[17] Sectools, “Top 125 Network Security Tools,” 2015.

Available at http://sectools.org/tag/web-scanners/.

[18] J. Walden and M. Doyle, “SAVI: Static-Analysis

vulnerability indicator,” IEEE Security and Privacy,

Vol. 10, pp. 32–39, 2012.

[19] P. Anderson, “Measuring the value of static-analysis tool

deployments,” IEEE Security and Privacy, Vol. 10, No.

June, pp. 40–47, 2012.

[20] “OWASP Top 10-2013 The Ten Most Critical Web

Application Security Risks,” 2013. Available at

https://www.owasp.org/index.php/Top_10_2013-Top_10.

[21] SAFEcode, “SAFEcode Homepage.” Available at

http://safecode.org/.

[22] Roger S. Pressman, Risk management, Seventh Ed.

McGraw-Hill, 2010.

[23] CWE, “CWE-79 Cross-site Scripting,” 2014. Available

at https://cwe.mitre.org/data/definitions/79.html.

[24] “CWE-89: Improper Neutralization of Special

Elements used in an SQL Command (’SQL

Injection'),” 2011. Available at

http://cwe.mitre.org/data/definitions/89.html.

63

Proceedings of IMCIC - ICSIT 2016

	ZA990QL

