

Artifact-Centric Modeling of Business Processes Using UML Diagrams

David Grünert, Thomas Keller, and Elke Brucker-Kley

ZHAW School of Management and Law

Institute of Business Information Technology

8401 Winterthur, Switzerland

{grud, kell, brck}@zhaw.ch

Abstract

The modeling of business processes to date has focused on an

activity-based perspective while business artifacts associated with

the process have been modeled on an abstract and informal level.

Ad hoc, dynamic business processes have recently emerged as a

requirement. Subsequently, BPMN was extended with ad hoc

sub-processes and a new standard, Case Management Modeling

and Notation (CMMN), has been created by the Object Manage-

ment Group (OMG). CMMN has an information-centric ap-

proach, whereas the extension of BPMN adheres to an activity-

based perspective. The focus on BPMN and on processes in gen-

eral has caused UML to fade into the background. UML com-

bines an activity-based perspective (i.e., activity diagrams) with

an information-centric perspective (i.e., state machines). This

paper promotes an information-centric approach based on UML

use case, state machine, and class diagrams that allows for an

opportunistic execution of activities based solely on UML mod-

els.

Keywords: Content-oriented workflow models, bottom-up model

creation, artifact-centric workflow models, document-oriented

workflow models.

1 INTRODUCTION

The evolvement of business process management has at least

partly been based on the need to enhance business IT alignment.

At first, process models mainly served as documentation of re-

quirements for the subsequent support by information technolo-

gy. Later on, these process models were automatically converted

into workflow definitions or were interpreted by a process engine

[1]. Both approaches led to a better alignment of business with

IT. However, not all business processes are suited to being im-

plemented in such a workflow-oriented way. As soon as

knowledge workers are involved, business processes need to be

more flexible and require more detail. A purely activity-based

perspective has to be complemented by an artifact-centric per-

spective. An expert knowledge worker in a collaborative setting

differs from a transactional knowledge worker whose sequence of

activities simply needs to be controlled and connected in an inte-

grated setting. The knowledge worker’s work is based on infor-

mation (i.e., business objects), based on which she/he decides

what needs to be done next. Given the unpredictable and varied

range of situations, parameters, and expected outcomes of work,

a much more situational and declarative, i.e., opportunistic, ap-

proach to modeling is required.

In response to this extended need, the information content of

business processes gained in significance. The modeling of data

is by no means a new modeling paradigm, but it has been either

conducted separately or information flows have been subordinate

and hidden in the process model. Accordingly, the positioning of

information at the center of modeling was termed data- or infor-

mation-centric process modeling [2], [3], [4], [5]. Information

entities are modeled by state charts. Transitions are triggered by

activities. Associated roles are defined by means of use case

diagrams. In [5], the term opportunistic BPM (oBPM) was intro-

duced for this kind of approach. The duality between activity-

and information-centric models was shown in [6].

Many artifact-centric approaches defined new or extended model

syntax [6]. However, a new or extended modeling syntax increas-

es complexity for all parties involved in designing, reading, and

implementing the modeled process and requires adapted model-

ing tools. Furthermore, not all models presented in the context of

artifact-centric approaches are adequate for being executed by a

process engine because there are no standardized workflows

involved [7]. We wanted to find out if it was possible to define an

artifact-centric model that was:

─ Not domain-specific,

─ Executable by an engine, and

─ Built on standard UML diagrams without the need of

new syntax elements.

We chose UML because it is tried and tested, receives broad tool

support, and knowledge of UML diagrams is widespread. In this

paper, we propose a solution based on UML use case, state ma-

chine, and class diagrams. We discuss advantages and disad-

vantages of the approach and we show how our approach extends

previous work regarding the expressiveness of the model and the

usage of standard UML.

2 RELATED WORK

A concept closely related to oBPM is the so-called content- or

data-oriented workflow model. The term “content-oriented” first

appeared in [8] and is used as an umbrella term for several scien-

tific workflow approaches, namely "data-driven", "resource-

driven", "artifact-centric", "object-aware" and "document-

oriented". Common to all of these models is the definition of

workflows based on documents, data records, or other objects

containing process data. Content-oriented workflow models are a

topic of ongoing research and numerous publications are availa-

ble ([2], [3], [4], [5]).

Similar to oBPM, most content-oriented workflow models allow

multiple execution paths of a business case, similar to the oppor-

tunistic task order of oBPM. However, only few approaches, e.g.

[6], make the linking of the document state machines as explicit

as oBPM. Because of the content-centric approach, content-

oriented workflow models are typically well-suited for modeling

ad-hoc events. What is new in oBPM is the combination of these

aspects with the definition of a formalized process model in

UML. 150

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

Several sample implementations of content-oriented workflow

models were carried out for research purposes and were able to

demonstrate their capabilities ([9], [10]). However, most of these

implementations address specific application domains such as the

health sector or the automotive industry. While no general pur-

pose business process modeling tool has so far been developed to

implement a content-oriented workflow model, there are software

providers conducting research on artifact-centric workflow mod-

els (see [11]).

3 ARTIFACT-CENTRIC BUSINESS PROCESS

MODELING USING UML

The term “information-centric BPM” stands for designing pro-

cesses with a minimum of control flow by modeling the states of

artifacts involved in business processes. The rationale behind this

approach is outlined in Section 1 and can also be found in [5].

The oBPM model [5] is both user- and artifact-centric1 and has

two different perspectives. The first perspective shows the top-

down view based on standard UML diagrams. This perspective is

useful for process owners or system administrators. The second

perspective is used for bottom-up model creation and allows

knowledge workers to read, change, and define their own pro-

cesses as suggested in [16]. We presented a first version of the

oBPM model in [5] including both perspectives. This section

describes the UML top-down perspective in more detail and

suggests several extensions of the previously presented model.

3.1 The oBPM Model in UML

The oBPM model defines roles, tasks modeled as use cases as

well as artifacts and their dependencies. The model also defines

hierarchies for tasks and artifacts. It allows us to define the work-

flow of any business case with one UML use case diagram, one

UML class diagram, and as many UML state machine diagrams

as there are documents or artifacts used in the workflow. This

section introduces all elements of the model and shows how they

can be represented in the above-mentioned UML diagrams.

Use Case Diagram for Role, Task, and Document Associa-

tions2. The first diagram used for oBPM is a use case diagram. It

illustrates a system’s overall capabilities by connecting roles,

tasks, and artifacts. An example of such a model is shown in Fig.

1. The use case diagram contains the following elements:

─ User roles define all roles available to users interacting

with the tool. User roles can be defined specifically for an

oBPM model, or they can be taken from existing role-

based access control systems (RBAC) [12]. A UML model

uses the stickman symbol to represent the different roles as

actors. The example shown in Fig. 1 defines the roles

<Sales>, <Accounting>, and <Customer Service>.

─ Tasks represent one or more activities which define a

meaningful operation in the business context. Tasks are

represented in the UML model as use cases. The example

shown in Fig. 1 defines the tasks <Sell product>, <File re-

ceipt of payment>, <Send reminder>, <File complaint>,

and <Handle complaint>.

1 We use the term <artifact> as a synonym for any kind of struc-

tured and unstructured business data.
2 All the following examples can be downloaded from

https://drive.google.com/file/d/0B4Pg8YZ0eoLUNjM2dTl6Z

WYwX1U/view?usp=sharing

Fig. 1. Use case diagram defining associations between roles,

tasks, and documents

─ Artifacts are business-relevant objects that are created,

manipulated, and archived as they pass through a business

process [13]. All artifacts used in oBPM are typed. The

type defines the data format3 and a lifecycle model. Arti-

facts are represented in the UML model as actors with a

document symbol. The example shown in Fig. 1 defines

the artifacts <Delivery notes>, <Voucher>, <Bill>, <Re-

minder>, and <Complaint>. While the modeling of roles as

actors is an obvious choice, modeling artifacts as actors is

not. We nevertheless suggest doing this for two reasons:

First, just like roles artifacts in oBPM can trigger the exe-

cution of tasks. Artifacts can therefore be seen as a third-

party system interacting with the process tool. Second,

while the oBPM tool will manage or at least monitor the

artifact’s lifecycle the content of the artifact will typically

be edited outside the tool. Therefore, the document is part

of the system’s context rather than part of the system.

─ Role-task associations identify all tasks where a given role

is involved. The association is represented in the UML

model as a directed or undirected association between the

actor symbol of the role and the use case symbol of the

task. Tasks with an association pointing towards the task

can be triggered by the user whenever all associated arti-

facts are in the required lifecycle state (see section <State

Machine Diagram> for details on the lifecycle). Associa-

tions pointing towards the role indicate tasks triggered by

the system. Undirected associations allow triggering from

both. Use cases without a relation to a task are triggered

and executed without involving a user. The example shown

in Fig. 1 defines that users can trigger the tasks <Sell prod-

uct>, <File receipt of payment>, and <File complaint>,

while the tool can trigger the execution of the tasks <Send

reminder> and <Handle complaint>.

─ Artifact-task associations relate artifacts with tasks and

identify all tasks a document is used in. The association is

represented in the UML model as an undirected association

between the actor symbol of the artifact and the use case

symbol of the task. Multiple associations pointing towards

the same task define an AND operation. Therefore, all as-

sociated artifacts must have the required lifecycle state to

execute the task (see section <State Machine Diagram> for

details on the lifecycle). The artifact-task association can

be decorated with multiplicity. Default multiplicity of one

is assumed if no multiplicity is defined. Multiplicity is used

when more than one instance of an artifact is used for a

single task execution (1..*) or when an artifact is optional

(0..1). The example shown in Fig. 1 defines that the task

<Sell product> uses an artifact of type <Voucher> and one

or more artifacts of type <Delivery notes>.

─ Task-task associations are used to define hierarchies for

tasks. The association is represented in the UML model

with an association of type <<include>>. The example

3 An artifact may also contain unstructured data of any format.

151

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

shown in Fig. 2 defines that the task <Sell product> and

<Write offer> triggers the execution of <Check credit rat-

ings>.

Fig. 2. Use case diagram defining hierarchies of tasks

Class Diagram for Document Associations. The second dia-

gram used for oBPM is a UML class diagram. It defines the de-

tails of the artifacts being used. An example of such a model is

shown in Fig. 3. Each use case diagram is associated with exactly

one class diagram. It shows how many instances of an artifact can

be created per case (see explanation below), how these artifacts

are related, and it can also define alternative documents. The

class diagram contains the following elements:

─ The class <Case>: The class diagram used for the oBPM

model must contain exactly one class named <Case>. This

class is not an artifact; it represents the case. An instance of

the class <Case> is created automatically by the system

whenever a new case is opened.

─ Normal classes define all artifacts used in the case. The

example shown in Fig. 3 contains five artifacts: <Delivery

notes>, <Bill>, <Reminder>, <Complaint> and <Transac-

tion receipt>.

─ Normal associations define relations between the artifacts

and their cardinality per case. The example shown in Fig. 3

defines that each case can have any number of delivery

notes and complaints and zero or one vouchers. In addition,

each bill can have one reminder.

─ Classes of type interface and associations of type <im-

plements> define alternative artifacts. The example shown

in Fig. 3 defines that <Transaction receipt> and <Bill> are

alternative artifacts. A task that requires an artifact of type

<Voucher> can either use the artifact <Transaction re-

ceipt> or <Bill>. While AND relations between multiple

artifacts and a task are modeled in the use case diagram,

OR relations must be modeled in the class diagram.

─

Fig. 3. Class diagram defining dependencies between documents

and case

State Machine Diagram for Artifact States. The last diagram

type used to complete the oBPM model is the state machine dia-

gram. This diagram is the key element of oBPM. It exists once

for each normal class defined in the class diagram. An instance of

the diagram is created for each instance of the respective class.

The purpose of the state machine diagram is to define all possible

states of artifacts and the availability of the tasks defined in the

use case diagram. Examples of state machine diagrams are shown

in Fig. 4 to Fig. 6. The state machine diagram contains the fol-

lowing elements:

─ The frame of the state machine identifies the artifact it be-

longs to. The example shown in Fig. 4 contains the state

machine for the artifact <Constraint>.

─ Start and final states are used to indicate the start and the

end of the artifact’s lifecycle. Multiple start and final states

can be used in hierarchical state machines (see Fig. 5).

─ States define the possible states of the artifact. The exam-

ple shown in Fig. 5 defines five states for the artifact

<Bill>: created, reminded, paid, hold, and canceled.

─ State transitions are used to restrict the execution of tasks

by defining the possible state transitions of artifacts. Re-

striction is achieved by linking all state transitions with one

or multiple tasks defined in the use case diagram. The state

machine diagram indicates this link with the event name

defined for the transition. In the example shown in Fig. 5,

the transition from state <created> to state <paid> is linked

with the task <File receipt of payment>. On the one hand,

this transition defines that the state <paid> can only be

reached with the task <File receipt of payment>. On the

other hand, it defines that the task <File receipt of pay-

ment> is only available if the artifact of type <Bill> is ei-

ther in the state <created> or <reminded>. The state transi-

tion can be decorated with a guard, using the UML square

bracket notation. The guard may contain a time restriction,

a role restriction, or a result restriction. An example of a

time restriction is shown in Fig. 5, where the task <Send

reminder> is executed when the artifact has been in the

state <created> for 30 days. An example of a result re-

striction is shown in Fig. 6 for the task <Handle com-

plaint>.

─ Combined states can be used to model exceptions or other

transitions that can happen from multiple states. The exam-

ple shown in Fig. 5 defines <No pending complaint> as a

combined state. The states <created>, <reminded>, and

<paid> are left when the task <File complaint> is executed.

Depending on the outcome of the task <Handle com-

plaint>, the original state is re-entered via the history state

or the document ends in the state <canceled>.

─

─

Fig. 4. Example of three state machines with transitions triggered

by tasks

152

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

Fig. 5. Example of a state machine with combined states

Fig. 6. Example of a state machine with a result restriction

3.2 Model Execution

The previous sections introduced the modeling aspect of oBPM.

In the following, we will address the question how a system can

process this information and how the workflow is finally present-

ed to the user.

The system executing oBPM needs to manage the states of all

artifacts. By applying the use case, class, and state machine dia-

grams, the executing system is able to derive a role-dependent

task list from these states. How this can be done is shown in the

following example: Assuming the system needs to evaluate if

users with the role <Accounting> are currently allowed to exe-

cute the task <File receipt of payment>, the system needs to parse

the use case diagram (Fig. 1) to find that the only required artifact

is of the type <Bill>. By analyzing the state machine diagram

(Fig. 5), the system finds that the artifact <Bill> must either be in

the state <created> or <reminded>. The system can now apply

this restriction to all open cases by navigating to the artifact

<Bill> and then following the associations defined in the class

diagram (Fig. 3). The result of this operation is a list of cases that

currently allow the execution of the task.

Finally, the result of this operation must be visualized for users.

A possible solution is a role-dependent task list in combination

with a filter. The filter defines which tasks are shown in the list

and allows choosing between all tasks and the tasks for a selected

case.

4 PROPERTY DAMAGE CLAIM USE CASE

This section applies the oBPM modeling approach introduced

above to the property damage claim example4 from [6]. It is

meant to show the applicability of oBPM in a more comprehen-

sive context. Fig. 7 shows the use case diagram consisting of

three actors, three artifacts, and a couple of tasks that have vary-

ing associations with actors and artifacts. Fig. 9 to Fig. 10 show

the respective state machines for the three artifacts.

A new instance of the property damage claim case is initiated by

the customer executing the task “Notify Claim”. There is no other

way to initiate a new instance since the task “Record Claim” is

only available once the artifact “Loss Event” is in the state “noti-

fied”. As soon as this has happened, the task “Record Claim” is

made available to the clerk. By executing this task, a new claim

instance is generated and the state of “Loss Event” changes to

“recorded”. The clerk then needs to validate the claim to move it

to the state “validated”. At this point, the role “Clerk” has no

more tasks to complete and the role “Investigator” takes over.

There are two possible tasks at this stage: “Decide on Claim” and

“Analyze”. The task “Analyze” will not change the state of the

artifact “Claim” and can be executed as many times as needed by

the “Investigator”. Only after executing the task “Decide on

4 All the drawings are available at

https://drive.google.com/file/d/0B4Pg8YZ0eoLUNjM2dTl6Z

WYwX1U/view?usp=sharing

Claim”, the state will either change to “accepted” or “rejected”,

depending on the result of the task execution. If the artifact is in

the state “accepted”, only the task “Offer Benefit” is possible to

be executed by the “Investigator”. By executing it the first time, a

payment artifact is generated and put into the state “created”.

From this point on, the “Investigator” is offered the task “Dis-

charge Claim” in addition to “Offer Benefit”. The rest of this path

is then straightforward and is not commented any further.

Fig. 7. Use case diagram for property damage claim

If the claim is rejected by the “Investigator”, the state moves to

“rejected”. By reaching this state, the role “Customer” is given an

opportunity to comment on the rejection by executing the task

“Review Claim”. If he or she accepts the rejection, the state ma-

chines of “LossEvent” and “Claim” move on to their respective

end states. An instance of “Payment” has not been generated for

this case.

There is no need to show the class model for “LossEvent”,

“Claim”, and “Payment” since it is trivial. As in [6], “Claim” is

not detailed any further since it does not lead to any more insights

regarding the interaction between actors and artifacts.

Fig. 8. State machine for artifact claim

153

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

Fig. 9. State machine for artifact loss event

Fig. 10. State machine for artifact payment

The property damage claim example shows that the state ma-

chines of the three artifacts are interleaved and that this interleav-

ing is defined by the use case diagram. The use case further spec-

ifies which roles have responsibility for which task. And the tasks

act as triggers for transitions of the state machines. Although no

business process is explicitly modelled, the workflow and all its

variants can be derived from the state machines and the use case

diagram.5

5 BENEFITS OF OBPM

Apart from the general advantages of any information-centric

approach, we claim that oBPM features the following advantages:

─ Standard UML: The presented oBPM approach makes

only use of standard UML diagrams. This allows the crea-

tion of models using any UML 2.x-compliant modeling

tool. The Object Management Group (OMG), which has

created UML, has also defined an XML-based exchange

format for UML models called XMI [14]. This data format

can be used to import the model into a process engine,

which often has native support for XML documents. Un-

fortunately, there are several incompatibilities between dif-

ferent implementations of XMI for UML [15]. Therefore,

each combination of modeling tool and process engine

needs to be validated.

─ Roles: Unlike other proposed notations such as CMMN,

oBPM includes the definition of user roles and their rela-

tions to tasks and subtasks. Defining user roles as part of

the model allows automatic translation of artifact states in-

to tasks for users and roles. The definition of roles also al-

lows us to make use of existing user and role management

IT infrastructure.

─ Task and artifact hierarchies: oBPM allows the defini-

tion of hierarchies for both artifacts and tasks. The hierar-

chy of artifacts makes it possible to define the multiplicity

for each artifact individually relative to the case or other ar-

tifacts. The multiplicity can also be used to define an arti-

fact as optional. Furthermore, it is possible to define AND

as well as OR relations between artifacts and tasks. AND

relations can be defined in the use case diagram by con-

necting multiple artifacts with a task. OR relations can be

defined in the class diagram by using an interface class.

Having AND and OR relations not defined in the same di-

agram can be seen as a disadvantage of the oBPM ap-

proach but it also helps to reduce the complexity of the in-

dividual diagrams. Hierarchies for tasks allow a more effi-

cient modeling by sharing common subtasks. This also

5 See https://www.lucidchart.com/invitations/accept/132be91d-

ed0f-40b2-94d6-3045e8c73932 for an additional example

comprising all features introduced in the previous paragraphs.

helps in increasing maintainability by reducing duplicated

parts of the model.

─ Artifact restrictions: When creating an artifact-centric

model, the final structure or exact content of an artifact is

often not known in detail. Unlike other models [6], oBPM

allows the definition of an entire model without knowledge

of any details of the artifacts used. The only requirement is

that their behavior can be modeled with a state machine

and that the tasks can be linked using the corresponding

transitions. Taking the artifact as a black box makes it pos-

sible to continuously improve the document structure with-

out the necessity of changing other parts of the model.

6 CONCLUSION

With the approach presented in this paper, we hope to show that

it is possible to define an artifact-centric model for business pro-

cesses using standard UML diagrams. The proposed approach

allows the modeling of all aspects of a business case including

artifacts, tasks, roles, artifact hierarchies, task hierarchies, and

artifact states. The approach does not define any restrictions on

the artifacts being used. It can deal with any type of artifact that

can be associated with a lifecycle and it does not require any

information on the content or the structure of the artifacts.

The approach distributes the information on a business case over

three types of diagrams. This reduces the complexity of the indi-

vidual diagram by separating different aspects of the business

case definition. The challenge of interlinking multiple diagrams

has been dealt with in a role-centric, bottom-up perspective as

proposed in [5].

We believe that oBPM represents an approach to adapting IT

support for the use by collaborative knowledge workers that have

been missed out by traditional activity-centric BPM and work-

flow systems. We are currently investigating how existing docu-

ment management solutions can be adapted to oBPM in order to

build a prototype. Especially emerging NoSQL data bases include

support for many key requirements of oBPM. In addition, we are

evaluating user acceptance of the oBPM approach together with

knowledge workers and process owners and we are compare

different procedures to develop the process definition.

7 REFERENCES

[1] Workflow Management Coalition, «WfMC, the Workflow Reference

Model,» Winchester, UK, 1995.

[2] S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran und R. Das, «ADoc-

oriented programming,» in Symposium on Applications and the Inter-

net (SAINT), 2003.

[3] P. Nandi und S. Kumaran, «Adaptive business objects - a new compo-

nent model for business integration,» in Proceedings of International

Conference on Enterprise Information Systems, 2005.

[4] A. Nigam und N. Caswell, «Business artifacts: An approach to opera-

tional specification,» in IBM Systems Journal 42(3), 2003.

[5] D. Grünert, E. Brucker-Kley und T. Keller, «oBPM – An Opportunis-

tic Approach to Business Process Modeling and Execution,» in Busi-

ness Process Management Workshops, 2014.

[6] S. Kumaran, R. Liu und F. Y. Wu, «On the Duality of Information-

Centric and Activity-Centric Models of Business Processes,» in Ad-

vanced Information Systems Engineering, Springer Berlin Heidelberg,

2008.

[7] V. K. a. M. Reichert, «Towards Object-aware Process Management

Systems: Issues, Challenges, Benefits,» in Proc. 10th Int'l Workshop

on Business Process Modeling, Development, and Support

(BPMDS'09), Amsterdam, 2009.

[8] C. Neumann und R. Lenz, «The Alpha-Flow Use-Case of Breast Can-
154

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

https://www.lucidchart.com/invitations/accept/132be91d-ed0f-40b2-94d6-3045e8c73932
https://www.lucidchart.com/invitations/accept/132be91d-ed0f-40b2-94d6-3045e8c73932

cer Treatment - Modeling Inter-institutional Healthcare Workflows by

Active Documents,» in Enabling Technologies: Infrastructures for

Collaborative Enterprises (WETICE), Larissa, 2010.

[9] COREPRO, Configuration-based Release Management Processes in

the Automotive Sector, University of Twente, 2005-2007.

[10] P. Flows, Process, Humans and Information Linkage for harmonic

Business Flows, University of Ulm, Institute of Databases and Infor-

mation Systems.

[11] IBM Research, «Business Artifacts Research,» [Online]. Available:

http://researcher.watson.ibm.com/researcher/view_group.php?id=2501.

[Zugriff am 22 05 2015].

[12] D. F. Ferraiolo und R. D. Kuhn, «Role-Based Access Controls,» in

15th National Computer Security Conference, Baltimore, 1992.

[13] D. Cohn und R. Hull, «A Data-centric Approach to Modeling Business

Operations and Processes,» IEEE Data Eng. Bull. 32(3), 3 2009.

[14] Object Management Group (OMG), XML Metadata Interchange

(XMI), Version 2.4.2, April 2014.

[15] e. a. K. Lausdahl, «Connecting UML and VDM++ with Open Tool

Support.,» in Volume 5850 of Lecture Notes in Computer Science,

Proceedings of the 2nd World Congress on Formal Methods, 2009.

155

Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2016)

	SA176BT

