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ABSTRACT 

 

The electroencephalographic (EEG) features of Parkinson’s 

disease (PD) are analyzed in the paper: presence of theta rhythm 

in low frequency range and disorder of the dominant alpha 

rhythm of brain activity. Based on these features and the data of 

31 patients with clinical diagnosis of 1st stage non-treated PD 

and 18 control volunteers, the classification model was built. 

Logistic regression model was used for probability of PD 

estimation in each of 16 channels. It was shown, that weighted 

sum of probabilities among channels, where weights refer to 

classification accuracy AUC in each channel, is a function with 

high accuracy of classification in accordance with threshold. 

The model was tested on data of 22 PD patients and 16 normal 

volunteers. The accuracy of prediction was around 73%. The 

results of EEG signal analysis, as well as feature extraction 

techniques and model performance, prove that proposed 

approach can be applicable to Parkinson’s disease diagnostics 

on the early stage. 
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logistic regression, wavelet transform, binary classification. 

 

1.  INTRODUCTION AND RELATED WORK 

 

Parkinson's disease (PD) belongs to a wide class of 

neurodegenerative diseases and is caused by the death of 

dopaminergic neurons of the brain. Particular attention was paid 

to the mechanisms of brain plasticity, which serve to 

compensate functional insufficiency of the degenerating 

neurons. From this point of view, authors consider the dynamic 

of neurodegenerative diseases and state the necessity of 

preclinical diagnostics and preventive therapy development [1]. 

The main problem of PD diagnostics is the search of disease 

features at pre-clinical and early clinical stages.  

 

Electroencephalography (EEG) and electromyography (EMG) 

are applicable methods for brain electrical activity analysis.  

The decrease of dominant frequency, as well as the power 

spectral density (PSD) shift, was previously found with the help 

of EEG and EMG spectral analysis [2].  Disorders of different 

organism systems, such as movement disorders, vegetative, 

emotional or physical, are considered as clinical features of PD. 

It is assumed that such disorders reflect or are coursed by brain 

electrical activity. This paper proposes an approach for feature 

extraction and classification of PD in EEG feature space [3]. 

This model can be applicable to disease risk group 

identification and screening. The train group consisted of 31 

patients with clinical diagnosis of 1st stage non-treated PD and 

18 control volunteers. Prediction results were tested on different 

set of 22 PD patients and 16 normal volunteers. 

 

 

2.  METHODS 

 

Wavelet Morlet transform was used for time-frequency EEG 

features analysis of early stage PD. Special attention was paid 

to theta rhythm of EEG (4-6 Hz) and disorder of alpha rhythm 

(8-12 Hz). Continuous wavelet transform (2) with mother 

function Morlet (3) was used to process EEG signal x(t) into 

time-frequency-power density spectrogram (1): 
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where τ and f = 1/T are time and frequency of spectrogram, Fb 

= Fc = 1.  

 

Fig. 1 illustrates the difference of S(τ) in the brain motor zone 

C3 (according to the standard 10x20 scheme of electrodes 

layout) for the normal volunteer (a) and (b) the patient at the 

first PD stage according the qualitative stages of PD described 

by Hoen-Yahr [4]. It can be seen that patient spectrogram 

shows high disorder, especially in the 8-12 Hz frequency range. 

Moreover, a theta rhythm arises in low frequency range. In 

order to analyze those features it is proposed to consider the 

time-frequency distribution of spectrogram extrema.  

 

   
 

       (a)                                              (b)                                                            

Fig. 1 Time-frequency power density spectrogram of normal 

volunteer (a) and of the 1st stage PD patient (b) of the EEG 

signals in motor cortex zone C3. 

 

The distribution of extrema in time-frequency buckets (∆f, ∆t) 

is used for further quantitative analysis. Fig. 2 frequency shows 

histograms asymmetry in 4-5 Hz frequency range of the 1st 

stage PD patient. The existence of theta rhythm can be found in 

C3, while there is an absence of such rhythm in C4 electrode. 

This one-sided development of disease is common on the early 

stages. 
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          (a)                                            (b)                                                            

Fig. 2 Sum of extrema histograms in (0.7 Hz, 180 sec) 

rectangles for symmetrical C3 (a), and C4 (b) EEG electrodes 

of 1st stage PD patient 

 

The relation of theta rhythm amplitude to alpha rhythm 

amplitude can be considered as the feature of PD. Moreover, 

extrema histograms can be used for quantitative analysis of the 

dominant alpha rhythm disorder. The dynamical histograms 

calculated in (0.7 Hz, 10 sec) rectangles show the disorder of 

electrical activity for the 1st stage PD (Fig. 3).   

 

 
   

          (a)                                              (b) 

Fig. 3. Dynamical histograms of the normal volunteer (a), and 

for the 1st stage PD patient. Histograms were calculated in (0.7 

Hz, 10 sec) rectangles 

 

Such disorder can be evaluated with the correlation matrixes. 

Thus, the average correlation for normal volunteer would be 

higher than for PD patient. This evaluation can be done by 

histograms of correlation values. Fig. 4 shows the difference of 

such histograms for the normal volunteer and the 2nd stage PD 

patient.  

   

 
         (a)                                               (b) 

Fig. 4 Histograms of correlation values for the normal 

volunteer (a), and the 2nd stage PD patient (b). 

 

Average value of correlation coefficients as well as its standard 

deviation can be considered as the features of PD. 

Finally, EEG feature space Pi was created: 

 

𝑃𝑖 ∈ {
𝐴𝜃

𝐴𝛼
(𝑗),

𝐴𝜃

𝐴𝛼
(𝑗∗), 𝑟(𝑗), 𝑟(𝑗∗), 𝜎(𝑗), 𝜎(𝑗∗)}    (4) 

 

Here Aθ/Aα (j) and Aθ/Aα (j*) refer to the ratio of theta rhythm 

to alpha rhythm in two opposite hemispheres. Indexes j and j* 

are 8 symmetrical EEG electrodes of standard 10x20 layout:  

𝑗, 𝑗∗ ∈ {𝐹𝑃1𝐹𝑃2, 𝐹3𝐹4, 𝐶3𝐶4, 𝑇3𝑇4, 𝑃3𝑃4, 𝑇5𝑇6, 𝑂1𝑂2}.  

By j we will refer to the hemisphere with PD and j* as the 

normal hemisphere. The average and deviation of correlation 

coefficients are marked as r(j), r(j*) and σ(j), σ(j*) respectively. 

 In order to aggregate the features into one value, which could 

indicate the probability of PD, it was proposed to build a 

logistic regression model. The probability of a particular 

outcome is linked to the linear prediction function: 

 

         ln (
𝑝𝑖

1−𝑝𝑖
) =  𝛽0 + 𝛽1𝑥1,𝑖 + ⋯ + 𝛽𝑚𝑥𝑚,𝑖    (5) 

 

In this function pi is the probability of positive outcome for 

observation i, given xm,i – the feature m in a dataset. The weight 

of each feature can be computed by maximizing the likelihood 

function: 

 

𝐿 = ∏ 𝑝(𝑥𝑖)
𝑦𝑖𝑛

𝑖=1 (1 − 𝑝(𝑥𝑖))1−𝑦𝑖    (6) 

 

Receiver Operating Characteristics (ROC) curve can be used for 

the model efficiency analysis. ROC curve shows the 

dependence between Sensitivity – True Positive Rate, and 

Specificity – True Negatives Rate. The Area Under Curve 

(AUC) can show the quality of the classification model. For 

random prediction AUC equals to 0.5, while for perfect 

prediction AUC is 1. 

 

3.  CLINICAL RESULTS 

 

Logistic regression model was trained on the EEG data of 31 

patients with clinical diagnosis of 1st stage non-treated PD  and 

18 control volunteers. EEG signals were measured in 8 pairs of 

electrodes. The table below indicates the AUC results of the 

models for each pair of electrodes based on the feature space (4) 

for PD hemisphere and normal hemisphere: 

 

Table 1. AUC values for logistic regression model in 8 pairs of 

electrodes. 

 

 FP1FP2 F3F4 C3C4 

PD hemisphere 0.82 0.79 0.73 

Normal hemisphere 0.79 0.67 0.69 

 

T3T4 F7F8  P3P4 T5T6 O1O2 

0.69 0.79 0.60 0.68 0.56 

0.63 0.60 0.62 0.62 0.68 

 

It can be seen, that the best prediction accuracy is reached in 

FP1 and FP2 electrodes, while the worst – in O1O2 and P3P4. 

Moreover, prediction accuracy on the PD hemisphere is slightly 

higher than on Normal hemisphere. Further the model trained 

on PD hemisphere was used. In total, 8 models were trained, 

and the outcome of the models was probability of PD.  

 

The model analysis was also done on the test data of 22 PD 

patients and 16 normal volunteers. EEG data of this group was 

not used in model training. Each model predicted probability of 

PD in every electrode. In order to compose all predictions in 

one value, it is necessary to develop an aggregation function 

based on each probability. It was proposed to use function F, 

which can be calculated according to formula: 

 

𝐹 =  ∑ |𝑃(𝑗, 𝑗∗) − 0.5| ∗ 𝐴𝑈𝐶(𝑗, 𝑗∗)𝑗,𝑗∗  (7) 

 

This function summarizes all probabilities adjusted on 50%. 

This adjustment is needed, so the contribution is zero for not 
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certain electrodes with 50% probability of PD. Then these 

adjusted probabilities are weighted with AUC of a particular 

electrode from Table 1. Thus models with lower accuracy 

would not have the same weight as good models. In addition, 

electrodes O1O2 and P3P4 were excluded from this aggregation 

due to low AUC. 

 

Fig. 5 shows the distribution of F among patients with PD 

(stage = 1) and normal volunteers (stage = 0). 

 

 
Fig. 5 Distribution of aggregated function F for control (above) 

and PD patients (below). 

 

Patients with PD have higher values of F, which are mostly 

concentrated around 1. Although, normal volunteers have low 

values of F, but with high deviation. In order to make a certain 

prediction, whether person has PD or not, it is necessary to 

select a cut off value. In accordance with this cut off value, 

person would be classified as PD or not. For sure, cut off value 

should have the optimal accuracy of classification among PD 

patients and among control volunteers.  It is proposed to 

calculate recall of PD (Recall 1) and control (Recall 0) 

respectively: 

 

𝑅𝑒𝑐𝑎𝑙𝑙0 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙1 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (9) 

 

In the formulas above, TP indicates the number of True 

Positives (correct prediction of PD), TN refers to True Negative 

(correct prediction of control), FP refers to False Positives (false 

prediction of PD) and FN refers to False Negatives (false 

prediction of control). For each possible cut off value, these 

recall functions are calculated.  

 

The results are shown on Fig. 6. In case of low threshold, model 

would assume everyone to have PD, thus recall of PD would be 

100%, but recall of control is 0%. On the other hand, if 

threshold is too high, then model predicts everyone as control, 

but none as PD. The optimal threshold is around 1.1. In this 

case, both recalls would be near 73%. Overall accuracy is also 

present on the chart in circles.  

 

 
Fig. 6 Recall curve of PD (cross) and control (triangle). 

Accuracy curve (circles) for various cut off thresholds. 

 

5.  CONCLUSIONS 

 

The electroencephalographic (EEG) features of Parkinson’s 

disease (PD) were analyzed in the paper. It was shown, that low 

frequency theta rhythm of brain activity as well as disorder of 

dominant rhythm can be considered as the features of early 

stage PD. The feature space was created and logistic regression 

model was built with binary target of disease. The training data 

consisted of 31 patients with clinical diagnosis of 1st stage non-

treated PD and 18 control volunteers. The model was trained for 

each of 16 channels, and the accuracy AUC was measured in 

each channel respectively. The probabilities of disease among 

channels were summarized in the function in accordance with 

AUC. The resulted function was proven to have high accuracy 

of prediction on the test data of 22 PD patients and 16 normal 

volunteers. The accuracy of prediction was around 73%. The 

future scope of work covers extraction of other potentially 

important features of PD from EEG data, testing other 

classification models and aggregate functions in order to 

increase the accuracy of prediction.  

 

The results of EEG signal analysis, as well as feature extraction 

techniques and model results, prove that proposed approach can 

be applicable to Parkinson’s disease diagnostics on the early 

stage, where the disease is already developed, but the clinical 

symptoms have not yet appeared 
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