

Applying the 3-layer Model in the Construction of a Framework to Create Web

Applications

Daniel SANCHEZ

 Universidad Distrital Francisco Jose de Caldas,

Bogotá, Colombia, danielssj88@gmail.com

Oscar MENDEZ

Universidad Distrital Francisco Jose de Caldas,

Bogotá, Colombia, oscfrayle@gmail.com

Hector FLOREZ

Universidad Distrital Francisco Jose de Caldas,

Bogotá, Colombia, haflorezf@udistrital.edu.co

ABSTRACT

Currently, there are a lot of frameworks to build web

applications working with the architectural pattern MVC

(Model View Controller) [1]. One interesting approach is to use

the 3-layer model [2], which allows identifying and separating

the final application in different layers that facilitates its

construction and maintenance. The purpose of this paper is to

present our approach of a framework [3] for developing PHP

web applications using the 3-layer model. This approach

integrates different technologies and design patterns in order to

provide one tool that supports the community in the creation of

PHP web applications providing build-in tools and applying

good practices focused on the pursue of proper development

times. In addition, the approach aims to handle common issues

in the industry like efficiency, maintainability, and security.

Keywords: Multilayer Architecture, Model View Controller, 3-

layer Model.

1. INTRODUCTION

According to [4], software are not only programs but all

associated documents and configuration data needed to make

these programs to operate correctly. Usually a software system

consists of several separated programs, configuration files that

are used to run these programs, and a documentation system for

describing the software. Thus, good software meet its goals

when these attributes highlights the functionality required by

the user, while being maintainable, reliable and easy to use.

That is the reason why this work seeks to characterize as a

multilayer framework to create web applications in PHP that

allows to improve own processes of software development from

its architectural and conceptual design. This architecture

provides new ways of perceiving and applying own

methodological of the area such as object-oriented

programming and application design patterns. Design patterns

have become very important due to they have changed the area

of software engineering in favor of creating truly elegant

designs [5].

Object-oriented software design is difficult, and it is even more

design it reusable [5]. Thus, object oriented software design, it

is necessary in to find the relevant objects, factoring them in

classes with the right granularity, define classes, inter-faces and

inheritance hierarchies, and establish key relation-ships between

these classes and objects. This paper proposes the development

of a framework to support PHP software development, which

has been validated through the creation of one specific web

application named CTS Virtual, which is a software to create

surveys that focus on research about the perception of the

Colombians about science, technology and society.

The development and documentation of CTS Virtual and our

framework does not intend to put the developers in the position

to decide between the different solutions available in the market

for the construction of web applications, what it looks for is to

present an experience that presents the readers to one the many

possible alternatives in terms of the use and implementation of

software architectures.

The paper is structured as follows. Section II presents the

context in order to explain the related concepts used in the

construction of the framework. Section III presents related

work. Section IV presents the implementation of the framework

in the practical case of CTSVirtual. Finally Section V presents

the conclusions.

2. CONTEXT

The software industry is in constant search of new ways of

solving existing problems. One good approach to improve the

development time and costs in the construction of software is

the reuse of source code, given the amount of web applications,

we found similar functionality that supports the fact to use and

develop build-in libraries, which allows performing a specific

task that can be integrated into multiple projects such as

libraries, which are able to perform generic features improving

the performance and security of applications that motivates the

reduction of time and effort that ultimately reduces

manufacturing costs.

In this section, we provide a brief explanation regarding

important concepts related to the construction of our approach.

A. Separation of Concern

364

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

Separation of concern (SoC) is a software development concept

that separates a computer program into different sections or

concerns, in which each concern has a different purpose. By

separating these sections, each one can encapsulate information

that can be developed and updated independently. 3-layer

development is an example of SoC in which the user interface

(UI) is separated from both the business layer and the data

access layer. Although the addition of SoC adds some

complexity to the applications design, the benefits outweigh the

extra complexity [6].

In the process of building a framework, defining the

architecture has a great importance because it is the basis for the

development of the logic components and their interaction,

taking in mind that these components need to be reused in the

applications that are implemented on it. For the specific case of

the development of CTS Virtual the definition of architecture

took place when the research about the main features of the

pattern of three layers and the Model View Controller was

made. This research generated the concepts used in the

construction of the web framework, which is mainly profiled to

characterize in an independent way the general aspects of each

of these patterns.

B. Model View Controller

The design pattern Model View Controller or MVC defines a

software architecture that separates data from the user interface

and events into different parts: the Model contains application

data, the View manages the user interface, and the Controller is

responsible for receiving user requests (events or actions

performed on the user interface). When the model is modified

then the view is updated; in addition, the controller selects the

view to show the actual responses and the model to assign to it

[7].

Moreover, according to [8], the MVC pattern consists of 3

different components, where the model acts as the domain that

software is built around, the view as the visual representation of

a model, and the controller responsible for processing input,

acting upon the model, and deciding on what action should be

performed, such as rendering a view or redirecting to another

page for supporting a business models. Figure 1 presents the

component diagram of the MVC pattern.

Fig. 1. Model View Controller component diagram.

C. 3-layer model

Another alternative is to use the 3-layer model, which separates

the presentation logic, business logic and data access

Fig. 2. 3-layer model.

in 3 different layers. Using the definition of layer, each layer

supports the layer n+1 having in mind that the lower layer in

this case is data access, so the presentation layer does not have

access to the data access layer. This model is presented in the

Figure 2.

One of the main advantages of this model is the low coupling

between the layers because this characteristic allows easily to

modify functionality in the application without having in mind

all the components of the application [9].

3. RELATED WORK

In the industry there are several frameworks to create web

applications using PHP such as Symfony, CakePHP and Zend

Framework. The majority of them use MVC as an architectural

design pattern [10].

Nevertheless, by interacting with frameworks such as CakePHP,

CodeIgniter, and Kohana, their maturity and thus the complex

and heavy that they can become at the time of development of

specific technological tools and specific objectives is not the

best, This is because they are equipped with lots of libraries for

the final result that are useless and impractical for the context.

Moreover, there are some projects that do not need the whole

structure of a framework like Laravel or Symfony, either

because they are very simple, they have very specific

characteristics or require extreme speed of execution. This

statement refers to the need to take concrete and lightweight

architectures that meet the specific objectives of the project that

is intended to be developed and that allows to be scalable to

adding new functionality. In this approach there are another

alternatives like Lumen [11] which is a reduced version of the

bigger framework Laravel [12].

Hence, the idea arises to create a framework with reduced

functionality in which the proposed architecture is designed to

build a set of logical tools that provide the necessary

components to developers, who make part of building

instruments focused on this field. In addition, the approach uses

the 3-layer model that is very well accepted in the academy;

thus, the academic community can use it in different projects.

365

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

4. SOLUTION STRATEGY

The development of this framework, which has been validated

in the construction of the project CTS Virtual, is characterized

by defining three levels or layers of functionality: presentation,

logic and persistence, where its operation is more simple and

linear fulfilling the purpose to separate the presentation of

persistence and to avoid logic code within interfaces.

It is important to mention that in the case of the construction of

the multi-layer architecture for creating web applications and

specifically for CTS Virtual, the use of Smarty [13] as template

manager plays a vital role because it allows to separate the

interaction between the code in the client side (HTML, CSS,

Javascript) with the code of the server side (PHP), giving a new

level of abstraction that modularize the presentation layer,

allowing one code more clear and readable. The complete

architecture is shown in the Figure 3.

Fig. 3. Multilayer model.

A. Persistence layer

In this model, the data access layer is responsible for

encapsulating all the logic necessary to communicate between

the application and what is being used to persist data, such as an

engine database, serialized files, or other storage system. In this

case, the storage system is a database; thus, our data layer

manage the SQL statements sent to the database. For that task it

is used the DAO (Data Access Object) pattern by the library

ADOdb [14] in what we have independence between the

database engine and the code implemented to connect to the

database. In the case of CTS Virtual we used the class hierarchy

presented in Figure 4.

Fig. 4. DAO classes - class diagram.

The factory pattern was used to create the DAO objects in the

next layer (i.e. the logic layer) that encapsulates the operations

made against the database, and all the classes inherits from the

class DAO, which has the definition of the generic methods that

return the SQL statement as:

 insert: Generates dynamically insert queries, using a

data array that receives as parameter.

 update: Generates dynamically update queries, using

a data array that receives as parameter.

 getAll: Generates dynamically simple select queries of

all columns in a table.

 get_by_attribute_and_value: Generates the select

query based on one filter with one merely parameter

366

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

 getJoin: Method that generates dynamically Join

sentence between tables.

 delete: Generates dynamically delete queries

comparing the attribute and values that receives as

parameter.

 enable: Enable or disable one register updating its

value ’enable’ to 0 or 1 depending the case.

These methods have the logic implemented to interact with

the entities in the database. Each of this classes inherits from

the abstract class DAO, decreasing the implementation only to

the next steps:

1) Inherits from the class DAO in the constructor to

define in the variable var_str_tableName of the DAO

superclass the desired name of the entity in the

database that to map whit such class. For example, the

class CategoryDAO that made operations with the

entity in the database category.

2) Later on, in the class FactoryDAO is made the

instantiation of the objects of the classes DAO created

to be used in the business logic layer.

This class receives the name of the class as a string

to create and return the new instance to use in the

next layers.

B. Business logic layer

The business logic layer uses the pattern DTO (Data Transfer

Object) to transfer the data from the data access to the

presentation layer. For this task, the same approach that was

used in the DAO pattern is used; thus, there is one abstract class

DTO that implements the generic functionalists to those classes.

For this, it is necessary to follow the next steps:

1) Creating the class that inherits from the class DTO in

the constructor is necessary to define in the variable

var_str_nameDao of the superclass DTO the name of

the desired DAO class to map with such class. For

instance, the class CategoryDTO that makes

operations with its corresponding DAO class, i.e. the

CategoryDAO class.

2) Afterwards, in the class FactoryDTO is made the

instantiation of the objects of the classes DTO created

to be used in the presentation layer. For this task, it is

necessary to declare the constants with the name of

the classes in DTO that are going to be instantiated in

the method create. This method receives the name of

the class as a string to create and return the new

instance to use in the next layers

367

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

3) In the business logic layer there are another classes

such as:

a) Tag Library: The tag library was created to print

HTML elements like forms, menu and so on;

these elements works with the structure and the

libraries used in the framework, for instance

using this to create the menu generates the

HTML structure that works with JQuery and

takes the look and feel configured for the

application. Figure 2 into the business logic layer

shows the Tag Library classes.

b) General Use Classes: These are classes for

general use presented in the Figure 2 into the

business logic layer. The functionality of those

classes are:

LoadCss: This class has a set of constants

defined and a static method to get the routes of

the stylesheets dynamically. LoadJs: It

accomplish the same function that LoadCss

class, but in this case it made the load of the

Javascript files and JQuery plugins.

Print: This class works with one tag library

returning a string with the HTML code generated

to assign to the Smarty templates that are

mentioned later in this paper.

Logs: Class responsible to print the server logs

in a text/plain file to make the instrumentation

and auditory in the application.

Security: The injections of malicious code are

one of the security issues more common in the

web applications [15] to prevent this our

framework has one personalized class used to

perform the filter and validate the inputs in the

URLs and form fields with the purpose to avoid

injections of malicious code as XSS injections or

SQL injections.

Session: Class responsible to manage the

sessions of the applications, avoiding security

failures like session fixation what is common in

applications that uses server sessions based in

cookies to manage the authentication and

authorization.

Util: Class that have useful operations and

common to use in all of the application.

C. Presentation Layer

To improve the separation between the client logic (HTML) and

the server logic (PHP) the template manager Smarty [13] was

used. In addition, the separation of the code this library allows

printing code with its own tags and the storage in memory

(Smarty cache) to future queries. The presentation layer has the

structure presented in the first part of the Figure 2. The

directories in the presentation layer are:

 files: It has the files generated or the general use for

the application like the XML, TXT, PDFs and

generated images files.

 cache: Directory used by Smarty to save the cache of

the templates

 compilation: This directory is used for Smarty to

save the templates compiled that are localized.

 modules: This directory contains the PHP scripts that

receive the requests of the forms to call the

functionalities in the business logic, the preload of the

Smarty variables to show in the view, and to process

the AJAX requests.

 view: It contains the folders of static files to present

in the view. The HTML directory contains the HTML

files with the Smarty variables to present the

information.

D. Configuration File

Another point to highlight in this framework in the

centralization of the configurations in one configuration file that

has all the routes, the separator to use in the directories system

like ’\’ for windows systems and ’/’ for Unix systems, plus the

session, database connection, smarty configurations and so on,

even the theme to display in the app with Jquery UI. This file

appears in the root of the app, but its location can be changed

and just its its path need to be updated in the index.php file.

E. Route

One of the main features of one web framework is the ability to

route calls made to its components from the URL, maintaining a

clear structure that is easy reading for the users and search

engines; it is why our framework runs routing using the

index.php file as an access point to respond to the requests from

the client-side in a way more agile. This in function of SEO

(Search Engine Optimization), as a feature for accessibility and

usability in web applications [16].

5. CONCLUSIONS

In the industry this kind of architectures allow having well-

defined three roles working within a group developing a project

that can work together taking advantage of the Soc (Separation

of concerns) [6] that create this architecture.

These work roles can be the designer or front-end developer

of the GUI that would work on the presentation layer, the

developer of the business logic which is responsible for

performing calculations and information processing, and the

developer of the data access logic which work directly in the

layer persistence and deal with the issues the the data query. In

this manner, none of these roles need to know how to work the

other roles, merely knowing the way to communicate with the

next layer; this approach allows us to generate standards of

work into the develop group.

The develop of CTS Virtual as a case under study allowed us to

determine the feasibility of developing a framework focused on

368

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

a software architecture based on a three-layer model,

considering the details of performance and security in the

integrity of the information; as well as it required to implement

functionalities like data access, template management, forms

building, and so on what made vital part of the core of the

framework as an agile and light architecture to create web

applications.

It is clear that there is a great variety of PHP frameworks to

build web applications, which are backed by large communities

and companies that invest resources at all levels in order to

improve their constant evolution, however this article focuses

on the experience of developing an architecture that allowed the

construction of CTS Virtual under a framework that focused on

the solution of specific problems, and which in turn is projected

as an opportunity to document an architecture and an experience

around the software development.

Scalability is presented as a common feature of the frameworks

mentioned before, This was materialized in our framework in a

file called config.php that allowed to centralize similarly all

those utilities and libraries with their respective configurations

to increase the possibility of scaling in a simple way web

applications, providing greater functionality and speed for the

development and implementation of the products obtained from

the basis of this architecture.

9. REFERENCES

[1] A. Leff and J. T. Rayfield, “Web-application

development using the model/view/controller design

pattern,” in Enterprise Distributed Object Computing

Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE

International, 2001, pp. 118–127.

[2] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern

oriented software architecture, ser. Wiley series in

software design patterns. Chichester, England and

Hoboken, N.J.: John Wiley, 2007.

[3] A. Pasetti, Software frameworks and embedded control

systems, ser. Lecture notes in computer science. Berlin

and New York: Springer, 2002, vol. 2231.

[4] I. Sommerville and M. I. A. Galipienso, Ingeniería del

software. Pearson Educacion, 2005.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design

patterns: Abstraction and reuse of object-oriented

design,” in European Conference on Object-Oriented

Programming. Springer, 1993, pp. 406–431.

[6] W. Penberthy, Exam Ref 70-486 Developing ASP. NET

MVC 4 Web Applications (MCSD): Developing ASP.

NET MVC 4 Web Applications. Pearson Education,

2013

[7] N. Kupp and Y. Makris, “Applying the model-view

controller paradigm to adaptive test,” IEEE Design &

Test of computers, vol. 29, no. 1, pp. 28–35, 2012.

[8] W. Romsaiyud, “Applying mvc data model on hadoop

for delivering the business intelligence,” in ICT and

Knowledge Engineering (ICT and Knowledge

Engineering), 2014 12th International Conference on.

IEEE, 2014, pp. 78–82

[9] H. Florez, “Multilayer arquitecture though ajax and

orm,” Vinculos, vol. 7, no. 1, pp. 3–16, 2013.

[10] B. Porebski, K. Przystalski, and L. Nowak, Building PHP

Applications with Symfony, CakePHP, and Zend

Framework. John Wiley and Sons, 2011.

[11] Lumen. Lumen laravel. [Online]. Available:

https://lumen.laravel.com/

[12] Laravel. Laravel. [Online]. Available: https://laravel.com/

[13] Smarty. Smarty: Template engine. [Online]. Available:

http://www. smarty.net/.

[14] ADOdb. Adodb: Database abstraction layer for php.

[Online]. Available: http://adodb.org/dokuwiki/doku.php

[15] M. Johns, “Code-injection vulnerabilities in web

applicationsexemplified at cross-site scripting,” It-

Information Technology Methoden und innovative

Anwendungen der Informatik und Informationstechnik,

vol. 53, no. 5, pp. 256–260, 2011.

[16] J. B. Killoran, “How to use search engine optimization

techniques to increase website visibility,” IEEE

transactions on professional communication, vol. 56, no.

1, pp. 50–66, 2013

369

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

	ZA356NC

