
A Comparison of SOBI, FastICA, JADE and Infomax Algorithms

Guillermo SAHONERO-ALVAREZ

Laboratorio de Ingeniería en Computación, Universidad Católica Boliviana “San Pablo”

La Paz, Bolivia - g.sahonero@acad.ucb.edu.bo

Humberto CALDERON

Laboratorio de Ingeniería en Computación, Universidad Católica Boliviana “San Pablo”

La Paz, Bolivia - hcalderon@ucb.edu.bo

ABSTRACT

The Blind Source Separation (BSS) problem is present in a

variety of engineering applications, including the

electroencephalographic (EEG) signal separation for artifact

removal procedure in Brain Computer Interfaces (BCI).

Independent Component Analysis (ICA) is a widely used

technique for this purpose, although, it is also well known to have

high computational complexity. Thus, when ‘real time’ operation

is the target on BCI systems, hardware solutions and specifically

FPGA devices arise as feasible answers to the needs. However,

when considering the design constraints and requirements, it is

necessary to analyze which ICA algorithm would fit better in

hardware. In this work, we evaluate different software

implementations of ICA approaches using MATLAB and

according to some criteria (running time, allocated memory,

accuracy and scalability) targeting four ICA algorithms: Second-

Order Blind Identification (SOBI), Hyvarinen’s fixed-point

algorithm (FastICA), logistic Infomax (Infomax) and Joint

Approximation Diagonalization of Eigenmatrices (JADE). The

outcomes have shown that SOBI’s MATLAB implementation is

the best procedure among all the analyzed techniques by

drastically overcoming the speed of the others algorithms.

Moreover, its correlation grades, corresponding to Pearson and

Spearman correlation coefficients respectively, indicate it as one

of the more accurate algorithms.

Keywords: Computational Resources Comparison, FPGAs,

Hardware Acceleration, Independent Components Analysis,

FastICA, Infomax, JADE, SOBI.

1. INTRODUCTION

Nowadays, human-machine interfaces have become more and

more significant. Automation of assistive technologies is

reaching unexpected boundaries, and it is foreseen that future

machines will know what humans want them to do by using just

the mind [1–3]. In this scenario, brain computer interfaces (BCI)

are emerging as feasible solutions when thoughts and intentions

are the only source of input information for a system. BCI’s

applications, by definition, may include wheel chair control or

support movements for paraplegic people guided by brain

signals, device’s control like vehicles, cell phones, computers,

and other applications which can even include gaming [4–8].

However, BCIs are required to provide a response with “no

latency” and portability as the actions the user wants to be

materialized must be performed on the way [2]. Unfortunately,

software solutions cannot be easily considered a definite answer

to the requirements, but hardware solutions (FPGA, SoC, ASIC),

which can address those needs in a better way, may address better

to them instead.

BCIs’ system functionality includes a signal separation stage to

be performed in order to later classify acquired signals and

remove biological artifacts like: heartbeats (cardiac artifacts), eye

blink/movements (ocular artifacts), muscle activity and noise

from a set of signals extracted with some technique like the

electroencephalography (EEG), magneto-encephalography

(MEG) or others [9], [10]. Many works state that by applying

ICA we can achieve this stage.

As real time human-machine interfaces based on BCI systems

require being fast and accurate, the signal separation stage must

present these attributes in its implementation, as a primary

objective, too. Therefore, both the Academia and the industry are

continuously researching on new ways to reach this goal.

Furthermore, highly customized hardware accelerators

implementation might be the answer to this situation, but

hardware design also needs to meet some constraints and

requirements related to memory management, time execution,

numerical accuracy and even scalability.

ICA can be performed by a variety of algorithms (see [11–16] for

more information), from which we have observed that four are

commonly used in brain signal separation. These are: Second

Order Blind Identification (SOBI)[17], Hyvarinen’s fixed point

algorithm (FastICA)[18], Infomax [19] and Joint Approximation

Diagonalization of Eigenmatrices (JADE)[20]. With the aim of

implement one of them on a hardware platform and accelerate the

process, an algorithm evaluation is needed in order to determine

the appropriate algorithm implementation to be studied and then,

implemented. In this sense, we have evaluated these four ICA

algorithms according to hardware design criteria and signal

separation accuracy and scalability using MATLAB.

The rest of the paper is organized as follows. Section II outlines

the theoretical background. Section III states the Comparison

Methodology and Tools used for the main purpose. Section IV

presents the Experimental Results and Analysis. Finally, the

article is concluded in section V.

2. BACKGROUND

ICA is a statistical technique that solves the BSS problem. This

computational method is used to separate a set of linearly mixed

multivariate signals and transform it into another set which

components are approximately the original signals and

independent between them [18], [21].

The core of ICA functionality relies on statistical independence.

17

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

The approaches to reach it use entropy measures by assuming

non-gaussianity, and even joint diagonalization of correlation or

covariance matrices; this latter is generally used when it is

assumed to exist time-correlation structure. In fact, as different

signals nature assumptions are stated, different algorithms can

also be proposed. These signals nature assumptions were studied

previously by Cardoso in [22] defining then some manifolds over

the ICA techniques work.

Mathematical Model

Classical ICA model is defined by the following expression:

 x(t) = A s(t) (1)

Where, x(t) is the received signals vector, A the mixing matrix

and s(t) the original sources vector.

Most ICA algorithms focus on computing an un-mixing matrix

W which can be seen as the approximate inverse of A. Therefore,

the ICA model turns into:

 Wx(t) = y(t) (2)

Being y(t) the approximate original signals, i.e. y(t) ≈ s(t).

On the other hand, many algorithms, if not all of them, use a pre-

processing step known as whitening [17], [18], [20]. In this case,

the whitened signals (z(t)) are computed by multiplying the

received signals by a whitening matrix B, that is:

 z(t) = Bx(t) (3)

The reader must note that all of these expressions can be

generalized to a matrix form. Actually, most ICA algorithms

implementations perform their operations on a received signals

matrix instead of a vector.

Algorithms

 SOBI - Second Order Blind Identification: Proposed

by Belouchrani et al. in [17], this algorithm relies on second-

order statistics to explode the time-correlation structure

assumption of the signals. It requires computing the following

steps:

1. Whitening

2. Computation of Lagged Correlation Matrices

3. Joint Diagonalization (JD)

The main concept of SOBI is the assumption about the diagonal

form of the lagged correlation matrices, which stands according

to the following expression:

Rx(τ) = E{x(t)x(t + τ)T}
= A Rs(τ)AT, ∀τ

(4)

Where Rs is the correlation matrix of the sources signals and Rx,

the lagged correlation matrix.

Considering that eq. (4) holds for all values of τ, there exists a

unitary matrix U = BA that jointly diagonalises all the correlation

matrices:

 UTRx(τ)U = Rs(τ) (5)

Therefore, the approximate original signals are computed

by U#Bx(t).

 FastICA - Hyvärinen’s Fixed Point Algorithm:

Hyvärinen’s algorithm is often used in ‘real time’ applications

because of the possible parallel implementation [23], [24]. This

algorithm converges quickly as it seeks for a component one by

one.

FastICA uses kurtosis for the independent components

estimation [25]. Whitening is usually performed on data before

the execution of the algorithm [18].

The following procedure performs FastICA:

1. Initialize wi (in random)

2. wi
+ = E (∅′(wi

TX)) wi − E (x ∅(wi
TX))

3. wi =
wi

+

‖wi
+‖

4. For i = 1, go to step 7. Else, continue with step 5.

5. wi
+ = wi − ∑ wi

Twjwj
i−1
j=1

6. wi =
wi

+

‖wi
+‖

7. If not converged, go back to step 2. Else go back

to step 1 with i = i + 1 until all components are

extracted.

 Infomax: This algorithm is based on the maximization

of entropy and presents a natural gradient form for the

independent components computation. It can be thought as a

neural learning method as the mathematical formulation stands

for the next expression:

 W(t + 1) = W(t) + η(t)(I − f(s)sT)W(t) (6)

Being η(t) a learning-rate function and f(⋅) a function related to

the distribution nature (i.e. super Gaussian or sub Gaussian). It is

important to note that the initial value of W is usually a random

matrix [25]. More information about the Infomax procedures can

be found in [18], [25].

JADE - Joint Approximation Diagonalization of

Eigenmatrices: Besides the previous approaches of kurtosis and

entropy, JADE, as SOBI does, uses JD and whitening. However,

the main difference between both is the set of target matrices on

which JD is done. JADE performs it on
n

2
(n + 1) eigenmatrices

that are computed by the fourth order cumulants of whitened

signals:

 [Qz(epeq
H]

ij
= Cum(zi, zj, zp, zq) (7)

An extended explanation of JADE can be found in [20], [26].

3. COMPARISON METHODOLOGY AND TOOLS

Comparison Criteria

We compare algorithms using criteria based on important

requirements and limitations that a future hardware

implementation may present. These criteria were:

Running Time (latency): Defined as the amount of

time passed from the initiation of the algorithm sequence to the

retrieval of the mixing matrix, this benchmark aims to measure

the computational load of the algorithm. As the time amount can

be variable because of the computer capacity (processor

frequency, RAM, etc.), results have been transformed into a

percent form showing how “slow” an algorithm is in relation to

the faster one.

Allocated Memory: Each algorithm uses specific

functions for its implementation; some of them may allocate

18

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

more memory than others. This indicator shows the approximate

amount of allocated memory for the whole algorithm. However,

memory management might be optimized in further hardware

implementation stage.

Accuracy and Scalability: This parameter aims to

measure the quality of the performed process. Although accuracy

can be biased by many other factors, e.g. numerical stability,

numerical precision, etc., we considered enough to compute the

statistical correlation grade between original and approximated

signals.

Nevertheless, it is also important to know if the algorithms

preserve their accuracy as the number of components to be

computed increase. For that purpose, we executed multiple tests

in order to find a pattern in the accuracy tendency of the

algorithms.

Comparison Procedure and used Tools

 Software and Datasets: We used MATLAB as the

comparison platform and the following toolboxes, which are

standard in the research community, to run the tests:

a. EEG Lab toolbox, which includes the SOBI,

Infomax and JADE codes[27].

b. The FastICA package which includes the FastICA

code[28].

On the other hand, for running time and allocated memory

measurements we used built-in MATLAB functions.

As for the EEG datasets used in this work, they were gotten from

P300 EEG available data of the Multimedia Signal Processing

Group of the École Polytechnique Féderale de Lausanne[29].

These data is the same used to produce the results of “An efficient

P300-based brain-computer interface for disabled subjects”[30].

However, although there are eight data sets corresponding to

eight different subjects, we only used data corresponding to the

subject one and six; reasons will be exposed later.

As we cannot know the original sources of acquired brain signals

and artifacts with fully precision, besides the EEG datasets, we

used the free Macaulay Library sound samples in order to

compute the accuracy and scalability of the algorithms. From all

the available sound packs, we only used three; these are Bird

Songs of Florida, Unexpected Voices of the Wild and Voices of

Eastern Backyard Birds. From them, the first 32 samples were

employed.

 Accuracy-Scalability Indicator Computation: For

this criterion, the Spearman and Pearson correlation coefficients

were used. As the Spearman coefficient indicates the subtle

strength of the association between two variables according to an

arbitrary monotonic function, the Pearson coefficient points out

the grade of linear correlation between those variables[31]. In the

first case, the more similar the variables’ shapes are, the closer

its value to 1 or -1; for the latter one, the more linearly related the

variables are, the closer its value to 1 or -1. As we are interested

in the signals shape and the linear correlation between them, the

signs of such signals are not considered and the absolute value of

the coefficients were used instead; this is also a consequence of

ICA’s sign ambiguity.

However, since ICA cannot obtain the independent components

orderly, it was necessary to develop a function to get paired an

approximated and an original signal by using both correlation

coefficients. In that sense, two signals or variables are said to be

a pair if their Spearman or Pearson coefficient is maximum

among the set of computed coefficients. On the other hand, in

order to determine the scalability properties of the algorithms, we

performed 31 tests of each algorithm. Every test had a different

increasing number of sources, thus, the test 1 had two

components, the test 2 had three and finally, the test 31 had 32

components.

 Comparison Procedure: The completely available

data in the Multimedia Signal Processing Group of the École

Polytechnique Fedérale de Lausanne includes eight subjects,

each with four recording sessions, which consists of six images.

This makes 24 samples to be analyzed per subject.

As analyzing the eight subjects’ data involves processing 192

samples each of 100000 data points and more than 30 channels,

we considered enough to process just the data from two subjects,

subject 1 and 6. This because of the data signals nature, subjects

1-4 did present a disability and subjects 6-9 did not (subject 5

data were not available online by the time this research has been

done). Then, by processing them, we could afford an

approximation to different scenarios: when brain signals

separation is performed in subjects with some disability and with

healthy subjects. Although the aim of this work does not imply

the study of brain signals’ difference between subjects with and

without some disability, we considered interesting to use both

kind of datasets as an exploration of our analysis.

Later, we developed a MATLAB function in order to structure

the running time and memory tests of each sample. This function

returned the time between the beginning and the end of each

algorithm and the amount of allocated memory. For the running

time tests, the MATLAB function tic-toc was used. On the other

hand, for the allocated memory tests, a profile was created for

every running instance of each algorithm. We must say that no

time tracker was implemented inside the profile procedure and

MATLAB was the only application running in the foreground.

Finally, for the algorithm’s accuracy determination: the 32 sound

samples were mixed by a uniformly distributed random matrix.

The ICA algorithms processed this mixed data matrix and then,

each computed component got paired with one original signal

source. The Spearman and Pearson coefficients of such pair were

respectively considered with the others to compute the average

of the test. We show the results and discuss them in the following

section.

We computed the differences between running time of

algorithms (shown in the Table II) by using average time and

performing:

%Dif =

100 (
tx

min(tFastICA, tInfomax, tSOBI, tJADE)
− 1)

(8)

On the other hand, we estimated differences between correlation

grade coefficients (shown later in Table III) using:

%Dif

= 100 |
cx

max(cFastICA, cInfomax, cSOBI, cJADE)
− 1|

(9)

19

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

The computer used for the experiments has the following

features:

Table 1: Computer Features

Processor

Freq.

Processor

Family

MATLAB

Version
O.S. RAM

2.4 GHz
Intel Core

i5
R2015a

Window

s 7
8GB

4. EXPERIMENTAL RESULTS AND DISCUSSION

Each subject’s results have been plotted to carefully observe the

behavior of the algorithm given the 24 different samples. We

categorized the performed tests in two: subject one and subject

six. Nevertheless, we found few differences between them,

suggesting that there is no remarkable difference on both

subjects’ brain signals nature. Results achieved by each

algorithm were grouped in only one plot for readability.

By observing the running time results (Fig. 1, 2 and Table 2), it

is clear that the faster algorithm in both subject’s tests is SOBI.

However, it also shows stability and relatively moderate use of

memory. We think that this result is a consequence of a good

implementation that might guide properly to the HW design.

Next to SOBI, we found the second faster algorithm: FastICA,

but, there are some instabilities in the time running tendency,

which can be a problem while trying to achieve ‘real-time’

processing. The possibility of a wrong performed

implementation is discarded by observing the allocated memory

of FastICA, which shows relative stability. We considered the

random nature of FastICA initial values as the reason of this

instability.

Table 2: Running Time of Algorithms

Algorithm
Average

Time

Worst

Time

Best

Time
%Dif.

FastICA 51.91 [s] 298.68[s] 11.82 [s] 503.87

Infomax 73.73 [s] 321.89 [s] 25.79 [s] 757.70

SOBI 8.60 [s] 12.28 [s] 6.86 [s] 0

JADE 78.20 [s] 162.86[s] 48.26 [s] 809.65

Further, the Infomax algorithm also shows instability in the

running time tendency though it has stability in the allocated

memory as FastICA. Like in the previous algorithm, we attribute

this instability to the random nature of initial values.

Finally, JADE shows interesting properties, as the allocated

memory is stable and smaller. However, running time results

suggests that the procedure represents a high computational load.

We infer that the stability property, which can be observed on

JADE and SOBI behavior, relies on the way that both were

theoretically formulated; both of them use the Joint

Diagonalization as a final step and the whitening procedure as a

pre-processing stage. The only difference between them, as we

stated before in the Background section, is the nature of the

matrices to be diagonalized. As JADE computes the

Fig. 1. Running Time and Allocated Memory Results of Subject 1

Fig. 2. Running Time and Allocated Memory Results of Subject 6

20

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

eigenmatrices based on fourth order cumulants, SOBI only

computes correlation matrices based on second order statistics.

We also think of this feature as the cause of having different

results in the running time tests. Such difference may due to the

way of computing the eigenmatrices, which is more expensive in

processor use than computing simple correlation matrices.

On the general overview of Allocated Memory criteria, we did

not appreciate critical differences between the subject 1 and 6

tests. Algorithms have shown an interesting behavior instead.

FastICA always allocates more memory than the others and

JADE allocates the least amount of memory. SOBI and Infomax

remain in the middle of the previous two algorithms.

Referring to the Spearman and Pearson correlation coefficients,

all of the studied algorithms have practically shown good

performance. Nevertheless, as we can see in Fig. 3 and Table 3,

SOBI is the best-rated algorithm considering the Pearson

correlation grade and Infomax according to the Spearman

correlation.

We noted that FastICA shows some instability related to both

tests; the reasons of that behavior must be studied in further

works. On the other hand, the algorithm that shows more stability

across the number of tests is SOBI; the other techniques show a

more pronounced decreasing tendency in both coefficients.

Table 3: Pearson and Spearman Average Coefficients

Algorithm
Pearson

Av.
%Dif.

Spearman

Av.
%Dif.

FastICA 0.9907 0.7516 0.9369 4.8224

Infomax 0.9975 0.0743 0.9844 0

SOBI 0.9982 0 0.9825 0.1926

JADE 0.9889 0.9355 0.9635 2.1236

5. CONCLUSIONS AND FUTURE WORK

Although FastICA is usually taken as a fast algorithm, we have

observed that this may depend on adequate initial values of the

procedure. Despite that, a parallel configuration of the technique

might be optimal in order to reduce the amount of running time.

On the other hand, memory used by FastICA seems to be higher

than the other algorithms but this may be outweighed by the

achieved acceleration rate if parallelism is implemented.

Furthermore, Infomax results suggest that its implementation

may not be a good idea, as parallelism is not easily achieved by

its mathematical definition, and because of its running time

tendency, which appears to be unpredictable.

We consider that SOBI achieved the best results in the performed

tests. Its running time and the allocated memory tendency show

stability as critical oscillations are not present in the results. The

utilized implementation might be seen as an optimal way to

perform SOBI and thus, a guide to implement this algorithm into

some hardware platform.

Regardless of the speed disadvantage of JADE, this algorithm

allocated less memory than the others and this fact must be

explored in future research. An adequate parallelization of JADE

algorithm would guide to a faster implementation with a

relatively good accuracy and low memory consumption. This is

especially desired when embedded systems are foreseen to be

constrained in memory.

Although the used tools (MATLAB, general-purpose computer,

ICA toolboxes) might be considered as subjective given the

unknown real influence of the operating system and even the way

in which algorithms were implemented, we consider that results

provide a general overview to determine which algorithm

performs better. This is because these commonly used MATLAB

ICA toolboxes can be utilized as guides to design in a preliminary

way the required hardware accelerators.

In that sense, and despite of the fact that FPGA devices have a lot

of room to implement systems with space parallelism [32], a

quick overview of the work-chain of SOBI reveals that the

algorithm cannot be easily parallelized. We think that these

technologies should be used to accelerate inner processes of the

algorithm instead. SoC which could afford and optimize the vast

linear algebra routines of SOBI might be the best prospect.

Overall, we think of the achieved accuracy of all the algorithms

as good. Nevertheless, all of them have shown a decreasing

tendency in the coefficients. Future works may study the limits

of such behavior in order to determine the outliers of a

satisfactory algorithm’s performance.

6. REFERENCES

[1] C. Brunner, N. Birbaumer, B. Blankertz, C. Guger, A.

Kübler, D. Mattia, del R. M. José, F. Miralles, A. Nijholt,

E. Opisso, N. Ramsey, P. Salomon, and M.-P. Gernot R.,

“BNCI Horizon 2020: towards a road map for the BCI

community.,” in Brain Computer Interfaces, C.

Fig. 3. Spearman and Pearson Coefficients of each Algorithm by Test.

21

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

Stephanidis and M. Antona, Eds. Springer International

Publishing, 2014, pp. 457–486.

[2] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain

Computer Interfaces, a Review,” Sensors, vol. 12, pp.

1277–1279, 2012.

[3] R. Rupp, S. C. Kleih, R. Leeb, J. del R. Millan, A. Kübler,

and G. R. Müller-Putz, “Brain–Computer Interfaces

and Assistive Technology,” in Brain-Computer-

Interfaces in their ethical, social and cultural contexts,

1st ed., vol. 12, Springer Netherlands, 2014, pp. 7–38.

[4] H. H. Alwasiti, I. Aris, and A. Jantan, “Brain Computer

Interface Design and Applications: Challenges and

Future,” World Applied Sciences Journal, vol. 11, no. 7,

pp. 819–825, 2010.

[5] D. P.-O. Bos, B. Reuderink, B. van de Laar, H. Gürkök,

C. Mühl, M. Poel, A. Nijholt, and and Dirk Heylen,

“Brain-Computer Interfacing and Games,” in Brain-

Computer Interfaces, Springer Verlag, 2010, pp. 149–

178.

[6] D. Göhring, D. Latotzky, M. Wang, and R. Rojas, “Semi-

Autonomous Car Control Using Brain Computer

Interfaces. Volume 2 Proceedings of the 12th

International Conference IAS-12.,” in Intelligent

Autonomous Systems 12, Springer Berlin Heidelberg,

2013, pp. 393–408.

[7] J. R. Wolpaw and N. Birbaumer, “Brain-computer

interfaces for communication and control,” Clinical

Physiology, vol. 113, no. 6, pp. 767–791, Jun. 2002.

[8] W. Yu-te, Y. Wang, and T.-P. Jung, “A Cell-Phone

Based Brain-Computer Interface for Communication

in Daily Life. International Conference, AICI 2010,

Sanya, China. October 23-24, 2010. Proceedings, Part

II,” in Artificial Intelligence and Computational

Intelligence, Springer Berlin Heidelberg, 2010, pp. 233–

240.

[9] I. R. Keck, V. Fischer, A. M. Tomé, C. G. Puntonet, and

E. W. Lang, “Finding Gold in the Dirt - Biomedical

Applications in the Light of ICA,” in Recent Advances

in Biomedical Signal Processing, J. M. Górriz, E. W.

Lang, and J. Ramirez, Eds. Bentham Science Publishers,

2011, pp. 149–156.

[10] B. W. McMenamin, A. J. Shackman, L. L. Greischar, and

R. J. Davidson, “Electromyogenic Artifacts and

Electroencephalographic Inferences Revisited,”

Neuroimage, vol. 54, no. 1, pp. 4–9, Jan. 2011.

[11] M. Crespo-Garcia, M. Atienza, and J. L. Cantero,

“Muscle Artifact Removal from Human Sleep EEG

by Using Independent Component Analysis,” Annals

of Biomedical Engineering, vol. 36, no. 3, pp. 467–475,

Mar. 2008.

[12] A. Delorme, J. Plamer, R. Oostenveld, J. Onton, and S.

Makeig., “Comparing results of algorithms

implementing blind source separation of EEG data.,”

Swartz Foundation and NIH Grant, 2007.

[13] A. Delorme, T. Sejnowski, and S. Makeig, “Enhanced

detection of artifacts in EEG data using higher-order

statistics and independent component analysis,”

Neuroimage, vol. 34, no. 4, pp. 1443–1449, 2007.

[14] A. Kachenoura, L. Albera, L. Senhadji, and P. Comon,

“ICA: a potential tool for BCI systems,” IEEE Signal

Processing Magazine, vol. 25, no. 1, pp. 57–68, 2006.

[15] V. Matic, W. Deburchgraeve, and S. Van Huffel,

“Comparison of ICA algorithms for ECG artifact

removal from EEG signals,” in Proc. of the 4th Annual

symposium of the IEEE-EMBS Benelux Chapter.(IEEE-

EMBS), 2009, pp. 137–140.

[16] M. Naeem, C. Brunner, and G. Pfurtscheller,

“Dimensionality Reduction and Channel Selection of

Motor Imagery Electroencephalographic Data,”

Computational Intelligence and Neuroscience, vol. 2009,

p. 8, 2009.

[17] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E.

Moulines, “A Blind Source Separation Technique

Using Second-Order Statistics,” IEEE Transactions on

Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.

[18] A. Hyvärinen and E. Oja, “Independent Component

Analysis: Algorithms and Applications,” Neural

Networks, vol. 13, no. 4–5, pp. 411–430, 1999.

[19] S. Amari, A. Cichocki, and H. H. Yang, “A New

Learning Algorithm for Blind Signal Separation,” in

Advances in Neural Information Processing Systems,

1996, pp. 757–763.

[20] J.-F. Cardoso and A. Souloumiac, “Blind Beamforming

for non Gaussian Signals,” IEEE Proceedings-F, vol.

140, pp. 362–370, 1993.

[21] J. V. Stone, “Independent component analysis: an

introduction,” TRENDS in Cognitive Sciences, vol. 6,

no. 2, pp. 59–64, 2002.

[22] J.-F. Cardoso, “The Three Easy Routes to Independent

Component Analysis; Contrasts and Geometry,”

Proc. ICA 2001, Dec. 2001.

[23] S. K. Behera, “FastICA for Blind Source Separation

and Its Implementation,” National Institute of

Technology Rourkela - Department of Electronics and

Communication Engineering, 2009.

[24] A.-L. Taha, “FPGA Implementation of Blind Source

Separation using FastICA,” The University of Windsor

- Department of Electrical and Computer Engineering,

2010.

[25] D. Langlois, S. Chartier, and D. Gosselin, “An

Introduction to Independent Component Analysis:

InfoMax and FastICA algorithms,” Tutorials in

Quantitative Methods for Psychology, vol. 6, no. 1, pp.

31–38, 2010.

[26] J.-F. Cardoso, “High-order Contrasts for Independent

Component Analysis,” Neural Comput., vol. 11, no. 1,

pp. 157–192, Jan. 1999.

[27] A. Delorme and S. Makeig, “EEGLAB: an open source

toolbox for analysis of single-trial EEG dynamics,”

Journal of Neuroscience Methods, vol. 134, pp. 9–21,

2004.

[28] D. of Information and C. S.-A. University, “The

FastICA package for MATLAB - Web Page:

research.ics.aalto.fi/ica/fastica/.” Jun-2015.

[29] M. S. P. Group, “École Polytechnique Federale de

Lausanne - MMSPG. BCI Datasets. Web-Page:

mmspg.epfl.ch/BCI_datasets.” Jun-2015.

[30] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens,

“An efficient P300-based brain–computer interface

for disabled subjects,” Journal of Neuroscience

methods, vol. 167, no. 1, pp. 115–125, 2008.

[31] J. Hauke and T. Kossowski, “Comparison of values of

Pearson’s and Spearman’s correlation coefficients on

the same sets of data,” Quaestiones Geographicae, vol.

30, no. 2, pp. 87–93, 2011.

[32] D. R. H. Calderón, “Arithmetic Soft-Core

Accelerators,” Delft University of Technology, Delft,

Netherlands, 2007.

22

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

	ZA832BA

