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ABSTRACT 

 

The Blind Source Separation (BSS) problem is present in a 

variety of engineering applications, including the 

electroencephalographic (EEG) signal separation for artifact 

removal procedure in Brain Computer Interfaces (BCI). 

Independent Component Analysis (ICA) is a widely used 

technique for this purpose, although, it is also well known to have 

high computational complexity. Thus, when ‘real time’ operation 

is the target on BCI systems, hardware solutions and specifically 

FPGA devices arise as feasible answers to the needs. However, 

when considering the design constraints and requirements, it is 

necessary to analyze which ICA algorithm would fit better in 

hardware. In this work, we evaluate different software 

implementations of ICA approaches using MATLAB and 

according to some criteria (running time, allocated memory, 

accuracy and scalability) targeting four ICA algorithms: Second-

Order Blind Identification (SOBI), Hyvarinen’s fixed-point 

algorithm (FastICA), logistic Infomax (Infomax) and Joint 

Approximation Diagonalization of Eigenmatrices (JADE). The 

outcomes have shown that SOBI’s MATLAB implementation is 

the best procedure among all the analyzed techniques by 

drastically overcoming the speed of the others algorithms. 

Moreover, its correlation grades, corresponding to Pearson and 

Spearman correlation coefficients respectively, indicate it as one 

of the more accurate algorithms. 

 

Keywords: Computational Resources Comparison, FPGAs, 

Hardware Acceleration, Independent Components Analysis, 

FastICA, Infomax, JADE, SOBI. 

 

 

1.  INTRODUCTION 

 

Nowadays, human-machine interfaces have become more and 

more significant. Automation of assistive technologies is 

reaching unexpected boundaries, and it is foreseen that future 

machines will know what humans want them to do by using just 

the mind [1–3]. In this scenario, brain computer interfaces (BCI) 

are emerging as feasible solutions when thoughts and intentions 

are the only source of input information for a system. BCI’s 

applications, by definition, may include wheel chair control or 

support movements for paraplegic people guided by brain 

signals, device’s control like vehicles, cell phones, computers, 

and other applications which can even include gaming [4–8]. 

  

However, BCIs are required to provide a response with “no 

latency” and portability as the actions the user wants to be 

materialized must be performed on the way [2]. Unfortunately, 

software solutions cannot be easily considered a definite answer 

to the requirements, but hardware solutions (FPGA, SoC, ASIC), 

which can address those needs in a better way, may address better 

to them instead.  

 

BCIs’ system functionality includes a signal separation stage to 

be performed in order to later classify acquired signals and 

remove biological artifacts like: heartbeats (cardiac artifacts), eye 

blink/movements (ocular artifacts), muscle activity and noise 

from a set of signals extracted with some technique like the 

electroencephalography (EEG), magneto-encephalography 

(MEG) or others [9], [10]. Many works state that by applying 

ICA we can achieve this stage.  

 

As real time human-machine interfaces based on BCI systems 

require being fast and accurate, the signal separation stage must 

present these attributes in its implementation, as a primary 

objective, too. Therefore, both the Academia and the industry are 

continuously researching on new ways to reach this goal. 

Furthermore, highly customized hardware accelerators 

implementation might be the answer to this situation, but 

hardware design also needs to meet some constraints and 

requirements related to memory management, time execution, 

numerical accuracy and even scalability.  

 

ICA can be performed by a variety of algorithms (see [11–16] for 

more information), from which we have observed that four are 

commonly used in brain signal separation. These are: Second 

Order Blind Identification (SOBI)[17], Hyvarinen’s fixed point 

algorithm (FastICA)[18], Infomax [19] and Joint Approximation 

Diagonalization of Eigenmatrices (JADE)[20]. With the aim of 

implement one of them on a hardware platform and accelerate the 

process, an algorithm evaluation is needed in order to determine 

the appropriate algorithm implementation to be studied and then, 

implemented. In this sense, we have evaluated these four ICA 

algorithms according to hardware design criteria and signal 

separation accuracy and scalability using MATLAB.  

 

The rest of the paper is organized as follows. Section II outlines 

the theoretical background. Section III states the Comparison 

Methodology and Tools used for the main purpose. Section IV 

presents the Experimental Results and Analysis. Finally, the 

article is concluded in section V. 

 

2.  BACKGROUND 

 

ICA is a statistical technique that solves the BSS problem. This 

computational method is used to separate a set of linearly mixed 

multivariate signals and transform it into another set which 

components are approximately the original signals and 

independent between them [18], [21]. 

The core of ICA functionality relies on statistical independence. 
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The approaches to reach it use entropy measures by assuming 

non-gaussianity, and even joint diagonalization of correlation or 

covariance matrices; this latter is generally used when it is 

assumed to exist time-correlation structure. In fact, as different 

signals nature assumptions are stated, different algorithms can 

also be proposed. These signals nature assumptions were studied 

previously by Cardoso in [22] defining then some manifolds over 

the ICA techniques work. 

 

Mathematical Model 

 

Classical ICA model is defined by the following expression: 

 

 x(t) = A s(t) (1) 

 

Where, x(t) is the received signals vector, A the mixing matrix 

and s(t) the original sources vector. 

Most ICA algorithms focus on computing an un-mixing matrix 

W which can be seen as the approximate inverse of A. Therefore, 

the ICA model turns into: 

 Wx(t) = y(t) (2) 

Being y(t) the approximate original signals, i.e. y(t) ≈ s(t).  

On the other hand, many algorithms, if not all of them, use a pre-

processing step known as whitening [17], [18], [20]. In this case, 

the whitened signals (z(t)) are computed by multiplying the 

received signals by a whitening matrix B, that is: 

 z(t) = Bx(t) (3) 

The reader must note that all of these expressions can be 

generalized to a matrix form. Actually, most ICA algorithms 

implementations perform their operations on a received signals 

matrix instead of a vector. 

 

Algorithms 

 

 SOBI - Second Order Blind Identification: Proposed 

by Belouchrani et al. in [17], this algorithm relies on second-

order statistics to explode the time-correlation structure 

assumption of the signals. It requires computing the following 

steps: 

1. Whitening 

2. Computation of Lagged Correlation Matrices 

3. Joint Diagonalization (JD) 

 

The main concept of SOBI is the assumption about the diagonal 

form of the lagged correlation matrices, which stands according 

to the following expression: 

 
Rx(τ) = E{x(t)x(t + τ)T}                  
= A Rs(τ)AT, ∀τ 

(4) 

Where Rs is the correlation matrix of the sources signals and Rx, 

the lagged correlation matrix.  

Considering that eq. (4) holds for all values of τ, there exists a 

unitary matrix U = BA that jointly diagonalises all the correlation 

matrices: 

 UTRx(τ)U = Rs(τ) (5) 

Therefore, the approximate original signals are computed 

by U#Bx(t). 

 

 FastICA - Hyvärinen’s Fixed Point Algorithm: 

Hyvärinen’s algorithm is often used in ‘real time’ applications 

because of the possible parallel implementation [23], [24]. This 

algorithm converges quickly as it seeks for a component one by 

one.  

 

FastICA uses kurtosis for the independent components 

estimation [25]. Whitening is usually performed on data before 

the execution of the algorithm [18]. 

 

The following procedure performs FastICA: 

 

1. Initialize wi (in random) 

2. wi
+ = E (∅′(wi

TX)) wi − E (x ∅(wi
TX)) 

3. wi =
wi

+

‖wi
+‖

 

4. For i = 1, go to step 7. Else, continue with step 5. 

5. wi
+ = wi − ∑ wi

Twjwj
i−1
j=1  

6. wi =
wi

+

‖wi
+‖

 

7. If not converged, go back to step 2. Else go back 

to step 1 with i = i + 1 until all components are 

extracted. 

 

 Infomax: This algorithm is based on the maximization 

of entropy and presents a natural gradient form for the 

independent components computation. It can be thought as a 

neural learning method as the mathematical formulation stands 

for the next expression: 

 

 W(t + 1) = W(t) + η(t)(I − f(s)sT)W(t) (6) 

 

Being η(t) a learning-rate function and f(⋅) a function related to 

the distribution nature (i.e. super Gaussian or sub Gaussian). It is 

important to note that the initial value of W is usually a random 

matrix [25]. More information about the Infomax procedures can 

be found in [18], [25]. 

 

JADE - Joint Approximation Diagonalization of 

Eigenmatrices: Besides the previous approaches of kurtosis and 

entropy, JADE, as SOBI does, uses JD and whitening. However, 

the main difference between both is the set of target matrices on 

which JD is done. JADE performs it on 
n

2
(n + 1) eigenmatrices 

that are computed by the fourth order cumulants of whitened 

signals: 

 [Qz(epeq
H]

ij
= Cum(zi, zj, zp, zq) (7) 

 

An extended explanation of JADE can be found in [20], [26]. 

 

3.  COMPARISON METHODOLOGY AND TOOLS 

 

Comparison Criteria 

We compare algorithms using criteria based on important 

requirements and limitations that a future hardware 

implementation may present. These criteria were: 

 

Running Time (latency): Defined as the amount of 

time passed from the initiation of the algorithm sequence to the 

retrieval of the mixing matrix, this benchmark aims to measure 

the computational load of the algorithm. As the time amount can 

be variable because of the computer capacity (processor 

frequency, RAM, etc.), results have been transformed into a 

percent form showing how “slow” an algorithm is in relation to 

the faster one. 

 

Allocated Memory: Each algorithm uses specific 

functions for its implementation; some of them may allocate 
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more memory than others. This indicator shows the approximate 

amount of allocated memory for the whole algorithm. However, 

memory management might be optimized in further hardware 

implementation stage. 

 

Accuracy and Scalability: This parameter aims to 

measure the quality of the performed process. Although accuracy 

can be biased by many other factors, e.g. numerical stability, 

numerical precision, etc., we considered enough to compute the 

statistical correlation grade between original and approximated 

signals. 

 

Nevertheless, it is also important to know if the algorithms 

preserve their accuracy as the number of components to be 

computed increase. For that purpose, we executed multiple tests 

in order to find a pattern in the accuracy tendency of the 

algorithms. 

 

Comparison Procedure and used Tools 

 

 Software and Datasets: We used MATLAB as the 

comparison platform and the following toolboxes, which are 

standard in the research community, to run the tests: 

a.  EEG Lab toolbox, which includes the SOBI, 

Infomax and JADE codes[27].  

b.  The FastICA package which includes the FastICA 

code[28]. 

On the other hand, for running time and allocated memory 

measurements we used built-in MATLAB functions. 

 

As for the EEG datasets used in this work, they were gotten from 

P300 EEG available data of the Multimedia Signal Processing 

Group of the École Polytechnique Féderale de Lausanne[29]. 

These data is the same used to produce the results of “An efficient 

P300-based brain-computer interface for disabled subjects”[30]. 

However, although there are eight data sets corresponding to 

eight different subjects, we only used data corresponding to the 

subject one and six; reasons will be exposed later. 

As we cannot know the original sources of acquired brain signals 

and artifacts with fully precision, besides the EEG datasets, we 

used the free Macaulay Library sound samples in order to 

compute the accuracy and scalability of the algorithms. From all 

the available sound packs, we only used three; these are Bird 

Songs of Florida, Unexpected Voices of the Wild and Voices of 

Eastern Backyard Birds. From them, the first 32 samples were 

employed. 

 

 Accuracy-Scalability Indicator Computation: For 

this criterion, the Spearman and Pearson correlation coefficients 

were used. As the Spearman coefficient indicates the subtle 

strength of the association between two variables according to an 

arbitrary monotonic function, the Pearson coefficient points out 

the grade of linear correlation between those variables[31]. In the 

first case, the more similar the variables’ shapes are, the closer 

its value to 1 or -1; for the latter one, the more linearly related the 

variables are, the closer its value to 1 or -1. As we are interested 

in the signals shape and the linear correlation between them, the 

signs of such signals are not considered and the absolute value of 

the coefficients were used instead; this is also a consequence of 

ICA’s sign ambiguity.  

 

However, since ICA cannot obtain the independent components 

orderly, it was necessary to develop a function to get paired an 

approximated and an original signal by using both correlation 

coefficients. In that sense, two signals or variables are said to be 

a pair if their Spearman or Pearson coefficient is maximum 

among the set of computed coefficients. On the other hand, in 

order to determine the scalability properties of the algorithms, we 

performed 31 tests of each algorithm. Every test had a different 

increasing number of sources, thus, the test 1 had two 

components, the test 2 had three and finally, the test 31 had 32 

components. 

 

 Comparison Procedure: The completely available 

data in the Multimedia Signal Processing Group of the École 

Polytechnique Fedérale de Lausanne includes eight subjects, 

each with four recording sessions, which consists of six images. 

This makes 24 samples to be analyzed per subject.  

 

As analyzing the eight subjects’ data involves processing 192 

samples each of 100000 data points and more than 30 channels, 

we considered enough to process just the data from two subjects, 

subject 1 and 6. This because of the data signals nature, subjects 

1-4 did present a disability and subjects 6-9 did not (subject 5 

data were not available online by the time this research has been 

done). Then, by processing them, we could afford an 

approximation to different scenarios: when brain signals 

separation is performed in subjects with some disability and with 

healthy subjects. Although the aim of this work does not imply 

the study of brain signals’ difference between subjects with and 

without some disability, we considered interesting to use both 

kind of datasets as an exploration of our analysis. 

 

Later, we developed a MATLAB function in order to structure 

the running time and memory tests of each sample. This function 

returned the time between the beginning and the end of each 

algorithm and the amount of allocated memory. For the running 

time tests, the MATLAB function tic-toc was used. On the other 

hand, for the allocated memory tests, a profile was created for 

every running instance of each algorithm. We must say that no 

time tracker was implemented inside the profile procedure and 

MATLAB was the only application running in the foreground.  

 

Finally, for the algorithm’s accuracy determination: the 32 sound 

samples were mixed by a uniformly distributed random matrix. 

The ICA algorithms processed this mixed data matrix and then, 

each computed component got paired with one original signal 

source. The Spearman and Pearson coefficients of such pair were 

respectively considered with the others to compute the average 

of the test. We show the results and discuss them in the following 

section. 

We computed the differences between running time of 

algorithms (shown in the Table II) by using average time and 

performing:  

 

 

%Dif = 

100 (
tx

min(tFastICA, tInfomax, tSOBI, tJADE)
− 1) 

(8) 

On the other hand, we estimated differences between correlation 

grade coefficients (shown later in Table III) using:  

 

 

%Dif

= 100 |
cx

max(cFastICA, cInfomax, cSOBI, cJADE)
− 1| 

(9) 
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The computer used for the experiments has the following 

features: 

Table 1: Computer Features 

Processor 

Freq. 

Processor 

Family 

MATLAB 

Version 
O.S. RAM 

2.4 GHz 
Intel Core 

i5 
R2015a 

Window

s 7 
8GB 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Each subject’s results have been plotted to carefully observe the 

behavior of the algorithm given the 24 different samples. We 

categorized the performed tests in two: subject one and subject 

six. Nevertheless, we found few differences between them, 

suggesting that there is no remarkable difference on both 

subjects’ brain signals nature. Results achieved by each 

algorithm were grouped in only one plot for readability.  

 

By observing the running time results (Fig. 1, 2 and Table 2), it 

is clear that the faster algorithm in both subject’s tests is SOBI. 

However, it also shows stability and relatively moderate use of 

memory. We think that this result is a consequence of a good 

implementation that might guide properly to the HW design. 

Next to SOBI, we found the second faster algorithm: FastICA, 

but, there are some instabilities in the time running tendency, 

which can be a problem while trying to achieve ‘real-time’ 

processing. The possibility of a wrong performed 

implementation is discarded by observing the allocated memory 

of FastICA, which shows relative stability. We considered the 

random nature of FastICA initial values as the reason of this 

instability.  

Table 2: Running Time of Algorithms 

Algorithm 
Average 

Time 

Worst 

Time 

Best 

Time 
%Dif. 

FastICA 51.91 [s] 298.68[s] 11.82 [s] 503.87 

Infomax 73.73 [s] 321.89 [s] 25.79 [s] 757.70 

SOBI 8.60 [s] 12.28 [s] 6.86 [s] 0 

JADE 78.20 [s] 162.86[s] 48.26 [s] 809.65 

Further, the Infomax algorithm also shows instability in the 

running time tendency though it has stability in the allocated 

memory as FastICA. Like in the previous algorithm, we attribute 

this instability to the random nature of initial values. 

Finally, JADE shows interesting properties, as the allocated 

memory is stable and smaller. However, running time results 

suggests that the procedure represents a high computational load. 

We infer that the stability property, which can be observed on 

JADE and SOBI behavior, relies on the way that both were 

theoretically formulated; both of them use the Joint 

Diagonalization as a final step and the whitening procedure as a 

pre-processing stage. The only difference between them, as we 

stated before in the Background section, is the nature of the 

matrices to be diagonalized. As JADE computes the 

Fig. 1. Running Time and Allocated Memory Results of Subject 1 

Fig. 2. Running Time and Allocated Memory Results of Subject 6 
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eigenmatrices based on fourth order cumulants, SOBI only 

computes correlation matrices based on second order statistics. 

We also think of this feature as the cause of having different 

results in the running time tests. Such difference may due to the 

way of computing the eigenmatrices, which is more expensive in 

processor use than computing simple correlation matrices. 

 

On the general overview of Allocated Memory criteria, we did 

not appreciate critical differences between the subject 1 and 6 

tests. Algorithms have shown an interesting behavior instead. 

FastICA always allocates more memory than the others and 

JADE allocates the least amount of memory. SOBI and Infomax 

remain in the middle of the previous two algorithms. 

 

Referring to the Spearman and Pearson correlation coefficients, 

all of the studied algorithms have practically shown good 

performance. Nevertheless, as we can see in Fig. 3 and Table 3, 

SOBI is the best-rated algorithm considering the Pearson 

correlation grade and Infomax according to the Spearman 

correlation.  

 

We noted that FastICA shows some instability related to both 

tests; the reasons of that behavior must be studied in further 

works. On the other hand, the algorithm that shows more stability 

across the number of tests is SOBI; the other techniques show a 

more pronounced decreasing tendency in both coefficients. 

Table 3: Pearson and Spearman Average Coefficients 

Algorithm 
Pearson 

Av. 
%Dif. 

Spearman 

Av. 
%Dif. 

FastICA 0.9907 0.7516 0.9369 4.8224 

Infomax 0.9975 0.0743 0.9844 0 

SOBI 0.9982 0 0.9825 0.1926 

JADE 0.9889 0.9355 0.9635 2.1236 

5. CONCLUSIONS AND FUTURE WORK 

Although FastICA is usually taken as a fast algorithm, we have 

observed that this may depend on adequate initial values of the 

procedure. Despite that, a parallel configuration of the technique 

might be optimal in order to reduce the amount of running time. 

On the other hand, memory used by FastICA seems to be higher 

than the other algorithms but this may be outweighed by the 

achieved acceleration rate if parallelism is implemented. 

 

Furthermore, Infomax results suggest that its implementation 

may not be a good idea, as parallelism is not easily achieved by 

its mathematical definition, and because of its running time 

tendency, which appears to be unpredictable.  

We consider that SOBI achieved the best results in the performed 

tests. Its running time and the allocated memory tendency show 

stability as critical oscillations are not present in the results. The 

utilized implementation might be seen as an optimal way to 

perform SOBI and thus, a guide to implement this algorithm into 

some hardware platform. 

Regardless of the speed disadvantage of JADE, this algorithm 

allocated less memory than the others and this fact must be 

explored in future research. An adequate parallelization of JADE 

algorithm would guide to a faster implementation with a 

relatively good accuracy and low memory consumption. This is 

especially desired when embedded systems are foreseen to be 

constrained in memory. 

Although the used tools (MATLAB, general-purpose computer, 

ICA toolboxes) might be considered as subjective given the 

unknown real influence of the operating system and even the way 

in which algorithms were implemented, we consider that results 

provide a general overview to determine which algorithm 

performs better. This is because these commonly used MATLAB 

ICA toolboxes can be utilized as guides to design in a preliminary 

way the required hardware accelerators. 

 

In that sense, and despite of the fact that FPGA devices have a lot 

of room to implement systems with space parallelism [32], a 

quick overview of the work-chain of SOBI reveals that the 

algorithm cannot be easily parallelized. We think that these 

technologies should be used to accelerate inner processes of the 

algorithm instead.  SoC which could afford and optimize the vast 

linear algebra routines of SOBI might be the best prospect. 

Overall, we think of the achieved accuracy of all the algorithms 

as good. Nevertheless, all of them have shown a decreasing 

tendency in the coefficients. Future works may study the limits 

of such behavior in order to determine the outliers of a 

satisfactory algorithm’s performance.  
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