
 
Gerard WARD  

Information Systems and Operational Management, Business School, The University of Auckland,  
Auckland 1010, New Zealand 

 
Lech JANCZEWSKI 

Information Systems and Operational Management, Business School, The University of Auckland,  
Auckland 1010, New Zealand 

 
 
 

ABSTRACT 
 

The Industrial Internet of Things (IIoT) describes a computing 
model where ubiquitous networks of heterogenous devices 
equipped with embedded sensors and actuators support 
innovative data-centric business models. Emergent IIoT use 
cases include Cyber Physical Production Systems (CPPS) to 
support asset optimization through self-organization of modular 
machines within production systems. In CPPS, raw materials, 
machines, and operations are interconnected to form a tightly 
integrated network. 
 
To ensure manufacturing continuity as CPPS networks evolve, 
asset managers will need to evaluate risk across multi-
disciplinary domains. The domains have different architectures, 
lexicons, and priorities. To contribute to the eventual 
codification of data risk in CPPS, this research builds on 
previous literature to consider how data flow across the CPPS 
model. The resulting refinements to current models were 
informed by a panel of experts drawn from disciplines including 
information and operational technology to bring greater 
specificity to the definition of business-critical data in 
supporting IIoT. Based on these expert views, a conceptual 
hierarchical automation architecture that may characterize many 
future state production processes, is presented. 
 
Keywords: Industrial Internet of Things (IIoT), Cyber Physical 
Production Systems, Risk Analysis, Security, Operational 
Technology, Information Technology, Industry 4.0.  
 
 

1.  INTRODUCTION 
 
Within IIoT, Cyber Physical Systems (CPS) refers to systems 
that integrate the computation and networking necessary to 
control physical processes bound by feedback loops [1]. For 
industrial manufacturing, Cyber Physical Production Systems 
(CPPS) describes a conceptual environment in which the 
attributes of CPS are extended to include the “5Cs: connection, 
conversion, cyber, cognition, and configuration” [2].  
 
Self-organization 
Supporting these 5Cs in CPPS is the learned state  necessary to 
provide for “adaptive, self-configuring and partly self-
organizing, flexible production plants” [3]. Achieving this 
necessitates the data-centric model relying on continual data 
analysis to uncover previously unknown cause-and-effect 
relationships [4]. Therefore, CPPS will likely compose modules 
or components, which together fulfill a certain function, or can 
be reconfigured to achieve another function. These Cyber 

Physical Production Modules (CPPM) will consist of 
heterogenous components  [3]. 
 
Supporting this continual data analysis are more 
computationally powerful smart actuator and sensor devices 
connected to Fog and the Cloud, which utilize virtualization 
technologies. Cloud refers to Internet-hosted data, and Fog 
refers to distributed computing, where computation is 
completed midway between the sensors and actuators to 
minimize data traffic and network latency. The use of these 
technologies will bring flexibility to the hierarchies that 
characterize manufacturing  automation [5]. Assisting flexibility 
are Software Defined Networks (SDN), a relatively new 
network paradigm that supports the logical centralization of 
physically distributed hardware in software [6]. In SDN, the 
software backplane uses virtualization to support scalability and 
improve security through process isolation, micro segmentation 
[7], and Zero-Trust [8]. Additionally, many CPPM applications 
may utilize containerized Microservices, an increasingly 
popular software architecture that can be readily modified and 
deployed. While loosely coupled which reduces the risk in 
interdependencies across the system, microservices have a 
reliance on widely distributed communication interfaces [9]. 
 
The continuing trend in integration of Information Technology 
(IT) and Operational Technology (OT) has been conceptualized 
as Industry 4.0 (also Industrie 4.0 or I4.0). I4.0 is described as a 
data-centric paradigm characterized by an “ability to accelerate 
corporate decision-making and adaptation processes” informed 
by “interconnectedness between cyber-physical systems and 
people” [4]. The concept of I4.0 emerged from academia and 
the German government, and the term IIoT was coined by 
General Electric to describe Internet-enabled Machine to 
Machine (M2M) communication. This research uses the term 
IIoT, as the objectives of I4.0 align with those of IIoT.   
 
Challenging precision in defining CPPS within IIoT is that its 
use-cases are a “thematic subject as opposed to a disciplinary 
topic” [10].  While emerging from IT and electrical engineering, 
[10] postulates that multi-disciplinary fields such as CPPS often 
start as themes before becoming codified. For example, in 
considering Artificial Intelligence (AI) in IIoT, the International 
Organization for Standardization (ISO), a Standards Developing 
Organization (SDO), currently lists 32 standards specific to AI. 
Of these 32 standards, 9 (28%) are published and 23 (72%) are 
under development [11]. Those under development include the 
use of AI in standards such as Functional safety and AI systems, 
as well as Risk Management [11], which are relevant to IIoT. 
Adding complexity to identifying the issues and risks specific to 
IIoT implementations is the fact that different technical 
specialties have their own lexicons and differing rates of system 

Emergent Cyber Physical Production Systems  
Investigating Data Risk Considerations in

Proceedings of the 13th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2022)

119 https://doi.org/10.54808/IMCIC2022.02.119
ISBN: 978-1-950492-61-9
ISSN: 2771-5914



change. Moreover, the International Electrotechnical 
Commission (IEC) considers that a challenge to IIoT adoption 
is the lack of  technical standardization [2].  
 
Illustrating emergent IIoT type use-cases, Congnizant [12], a 
US-based technology company, states that use of IoT data to 
deliver tighter integration between a pharmaceutical client’s 
manufacturing and ERP systems, delivered a 20% increase in 
production output. Also, a US tool manufacturer’s digital 
transformation, which focused on the use of IoT-derived data, 
has led to operational improvements projected to deliver 
US$100 million in cost savings over 5 years [12]. Extending 
these case-studies into increasingly more complex self-
organizing paradigms across multiple manufacturing categories, 
will require robust risk management.  
 
To contribute to the process of CPPS risk evaluation, given 
these challenges, this research presents generalized process 
boundaries showing the critical data interchange that will help 
asset owners to consider the priorities that risk identification 
must account for. The expert input of a panel of IT and OT 
experts informed the refinement of the conceptual model 
alongside key risk considerations. The objective of this research 
is to contribute to the development of a systems approach to 
risk assessment in CPPS.  
 
This research is structured as follows. Section 2 discusses the 
evolution of Industrial Automation and Control Systems (IACS) 
as well as key data considerations and the current state of 
standardization.  Section 3 sets out the methodology used in this 
research. Section 4 brings specificity to where CPPS sits within 
the IIoT paradigm, and in section 5 the findings show how 
traditional data hierarchies will flatten as the management of 
business-critical data is supported by new technologies. Section 
6 presents the research conclusions. 
 
 

2.  IIOT PROCESS DATA 
 

Related Work  
Across IT systems the CIA Triad (CIA) is used to broadly 
approximate the essential data properties of Confidentiality, 
Integrity, and Availability [1] . For OT, CIA is situationally 
modified to include data Availability and Integrity given they 
are key to process correctness, followed by Confidentiality 
(AIC) [1]. For OT safety-critical processes, Safety is added as 
SAIC, to emphasize the process redundancy necessary to ensure 
the data integrity required of functional safety systems. Process 
integrity is vital, as failures could result in injury or death, 
environmental degradation, and/or significant economic 
disruption.  
 
The common usage of the word critical implies both the 
significance and consequences of failings, relating specifically 
to matters “of the greatest importance to the way things might 
happen” and “extremely serious or dangerous” [13]. Criticality 
means different things across the different domains in the IIoT, 
so key considerations are discussed in the following sections.  
 
Industrial Automation and Control Systems (IACS) 
For processes in CSSP that are critical, the system will draw on 
IACS, a class of industrial computing within the domain of OT. 
IACS comprises hardware, data networks, and software.  
 

The progressive refinement of standards that provide a baseline 
of functional attributes has assisted the reduction of risk in the 
operation of IACS. Examples include: IEC 62443 - Industrial 
Automation and Control Systems (IACS); IEC 61508 covering 
functional safety of programmable electronic safety systems; 
and for data security in networks and systems, the IEC 62243 
series. When in control of  hazardous processes, IACS will 
include the layering of redundant systems necessary to ensure 
the level of process safety specified in IEC 61508 [14].  
 
In IACS systems, risk is defined as “a function of the frequency 
of an unwanted dangerous event and the severity of the 
consequences of that event/hazard” [15]. Illustrating the 
differing lexicons across IT and IACS, the IT standard ISO 
27001 (part of the 27000 IT security series) includes a single 
reference to hazard. It refers to environmental hazards that 
threaten IT equipment [16], but not to equipment preventing the 
IACS categories of hazard that risk injury or the loss of life. 
Contributing to these different lexicons is that IT and OT are 
discrete disciplines characterized with differences including:  
 
• Separate architectures: the two domains have different 

computational  priorities in that OT emphasizes process 
correctness, whereas IT emphasizes performance [17].  

• Communication protocols: conflicting protocols may cause 
OT systems to enter an unsafe state  [18].  

• Asset lifespan: the IT asset lifecycle is typically 3 to 5 
years, whereas IACS assets may be required to last for 30 
years or more [19]. 

• Divergent design: safety is a critical OT design criterion 
[18], whereas IT prioritizes confidentiality and integrity. 

• Hardware versus software: traditionally IT has favored 
software security protections, and OT has favored 
hardware [18]. 

 
To provide for process continuity, risk management is the 
discipline that, following the identification of issues and 
appropriate compensating controls, reduces the risk of 
vulnerabilities being exploited to organizationally acceptable 
levels. With regard to data, the level of control applied needs to 
be proportionate to the process or function that the data 
supports; i.e., the economic value derived from that data in 
supporting the fidelity of organizational decision making.  
 
Verification and Validation (V&V) 
To assist the identification of vulnerabilities that could threaten 
SAIC, Verification and Validation (V&V) is used to measure 
how well the behavior of a physical system matches that of the 
engineering model it approximates [20]. Validation examines 
the processes used to determine that the right system was built, 
and the resulting behavior of the physical system [21]. 
Verification is used to ensure the system meets its functional 
requirements, including safety [21]. V&V is critical to the 
quality management necessary to ensure system integrity. Risk 
management is then used to further reduce the inherent risk to 
be within organizationally acceptable tolerances. Alongside 
V&V, certification is the quality management process where the 
robustness of V&V is assessed, often by an independent third 
party.  
 
Safety-Critical Data 
Reflecting the need for sequence in the way things happen, in 
support of OT correctness, the requirement for real-time 
execution gives rise to fundamental differences between IT and 
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OT architectures. OT requires that processing tasks have set 
priorities, such that no lower-value task can execute before 
higher-value critical tasks [22].  In contrast, IT processing uses 
speculative execution, whereby instruction sets are loaded into 
memory in anticipation of their being called. Speculation lacks 
the precision required of OT critical task sequencing, and 
therefore process correctness [22]. 
 
Where hazards are present, and subject to the damage that could 
result from failure, Safety Instrumented Systems (SIS) are 
implemented to support fail-safe conditions [23]. SIS describes 
the hardened hardware and software that are implemented to 
ensure functional safety is maintained when abnormal operating 
conditions are encountered. In safety-critical systems, Defense 
in Depth (DiD) is considered during the design stage, with 
multiple levels of redundancy included to reduce the risk of 
serious accidents to be within an acceptable range [24]. DiD 
also addresses the risk that “a safe failure of one function may 
create a new hazard or be an additional cause for an existing 
hazard” [16]. 
 
Illustrating risks to SIS, in 2017, nation state actors 
compromised an SIS installed in a Saudi Arabian oil refinery 
[25]. While the SIS had accidently been left in an incorrect 
operating state, researchers postulate it was only an error in the 
code of the TRISIS malware that prevented it from being 
capable of triggering a refinery explosion [26]. It is considered 
that TRISIS was likely installed following a compromise of the 
intermediatory IT networks used for remote access to the IACS 
[26]. So while attacks against OT assets are increasing, 
typically IT assets are used as the intermediary attack vector 
[1]. 
 
Business-Critical Data  
Differentiating safety-critical from business-critical data is the 
fact that the OT term ‘safety’ addresses control of physical 
processes. These are processes for which failures are kinetic, 
and thus could cause physical damage. The consequences of 
failings in securing business data are typically financial or 
reputational [1]. Reputational losses may include loss of market 
share. Therefore, the risk controls appropriate to business-
critical data are those associated with IT systems, so they 
approximate CIA.  
 
Illustrating business-critical issues, in May 2021 a ransomware 
attack of IT systems resulted in the five-day shutdown of a key 
US pipeline. This economically critical asset supplies 45% of 
the fuel consumed on the US’s east coast [27]. While Colonial 
Pipeline’s IT systems served as the attack vector, the co-
dependency of the IACS systems on the billing systems 
installed in the IT domain meant customers could not be 
charged for usage. As this business-critical information was 
unavailable, this contributed to Colonial’s IACS systems being 
shut down. Therefore, where vulnerabilities are present in the 
legacy cores of IT, given the tight integration across domains 
that IIoT presents, new classes of operational risk may arise 
from these tightly integrated co-dependencies.  
 
Like OT, IT also embraces the concept of DiD. In IT, DiD 
refers to successive layers of countermeasures necessary to 
thwart a threat actor pursuing the same attack vector [28]. 
Therefore, in IT deployments, DiD is a threat isolation 
mechanism protecting the interior from exterior disturbance. 
Highlighting different priorities, for IACS, DiD is a hazard 
containment mechanism, protecting the outside from internal 

process disturbance. For IT, DiD is dynamic, in that additional 
countermeasures may be introduced over time, or upgraded at 
frequent intervals. For IACS, the asset life, and the need to 
support continuous and potentially hazardous processes, limits 
the opportunity for new technologies to be introduced. Changes 
to IACS systems will necessitate further V&V, whereas 
changes to IT systems typically do not.  
 
IoT and IIoT Protocols 
A characteristic of IIoT environments is the integration of 
protocols, standards, and data buses of different technologies 
[29] necessary to support device and machine interoperability. 
While IT typically relies on the dominant and standardized 
TCP/IP protocol (or the IP variant, UDP), a multiplicity of 
communication protocols support differing IIoT use-cases.  
 
Those protocols targeting IoT and IIoT typically have trade-offs 
relative to performance, security, and energy consumption. For 
example, Lora is an open standard, low-power physical layer 
protocol. Supporting the cyber layer, LoraWan extends 
connectivity across wide area networks up to 20km in range 
bidirectionally, and is normally deployed in a single-hop star 
network topology [30]. LoraWan’s security includes each smart 
device using robust AES data encryption, and globally unique 
identifiers to support device identity management [30]. 
However, weaknesses include encryption key management 
using long-term keys, and encryption functions relying on 
repetitive cipher patterns [29].  
 
Illustrating threats, in late 2021 a key US cyber agency, CISA 
[31], released an alert advisory that an open source middleware 
protocol, Data Distribution Service (DDS), which is used to 
integrate business critical IoT systems, could be exploited.  
Exploitation risks include Distributed Denial of Service 
(DDoS), remote code execution, and information exposure [31]. 
This middleware has been implemented by NASA, Siemens, 
and Volkswagen [32]. 
 
Standardization of Other Core Technologies 
As set out in the previous section, with 72% of AI-related 
standards currently under development [11], this may challenge 
the V&V of systems, given the absence of  uniform standards. 
As risk management is used to reduce inherent risk to be within 
organizationally acceptable tolerances, the absence of 
standardization could result in adverse variance within the 
inherent risk.  
 
Developing standards is a time-consuming process for SDOs. 
For example, standardizing 5G specifications spanned 5 years 
(2015 through 2020) [33]. It is postulated that the rate of 
research and innovation is now at such a level that traditional 
SDO processes “will not be able to keep up, speed-wise” [33] 
[5].  
 
To illustrate the complexity IIoT presents risk managers, Fig. 1 
shows standards that may be applicable (subject to the extent of 
safety-critical considerations). An asterisk (*) next to a standard 
indicates it is currently under development. While Fig. 1 does 
not provide an exhaustive list of standards that may be relveant 
to IIoT, it illustrates the plethora of standards that the heavily 
integrated fields of IIoT and CPPS may need to satisfy as part 
of robust V&V processes. 
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For example, key aspects of  IEC TR 30166 covering IIoT [2] 
that are still drafts include AI [2]. While AI is noted as enabling 
sustained autonomous operations, it is subject to evaluation by 
other SDOs [2]. And while CPPS is referenced, there is no 
specificity [2]. Also, in Fig. 1, included under Cyber Physical 
Production Systems are two parts of the ISO 23704 series 
addressing Cyber-Physically controlled Smart Machine Tools. 
While this series may inform CPPM, as drafts they are yet to be 
ratified [34].   
 

 
 

Fig. 1. Standards relevant to IIoT and CPPS. 
 
Therefore, a generalised risk model that can assist the process 
of identifying IIoT data risk, as well as emergent CPPS risk 
considerations, will significantly benefit asset owners as well as 
researchers. The next section sets out how the model this 
research presents was refined using expert input.  
 
 

3. DEFINING MODEL ATTRIBUTES  
 
Alongside the literature cited in this research, the IACS, CPS, 
and risk considerations discussed have been shaped by the 
insights of 18 heterogenous experts, including those with 
domain expertise across IT, IACS, and IoT. Using the research 
method Delphi, expert opinion covering risk attributes in the 
IIoT integration cores has been used to refine the importance of 
key themes, as well as the model discussed in the following 
sections of this research. The IIoT- and CPPS-related questions 
were seeded by a detailed survey of literature bound by the 
systematic processes prescribed by PRISMA [1]. 
 
Delphi is a data-driven research method used in emergent fields 
for which empirical evidence is limited [35]. The Delphi 
method uses semi-structured and open questions during 
interviews, to identify and refine emergent themes. The 
heterogenous makeup and size of the panel, comprising 18 
participants, aligns with directions in the existing literature, 
where [35] found that 59% of Delphi panels comprised between 
14 and 30 participants. Moreover, [36] noted that the early 
advocates of Delphi used and recommended a small panel size 
for emergent fields.  
 
The depth of experience across the IT participants spanned 
operations and security architects, breach response, and risk 
consulting, with an average of 25 years of practice. The OT and 
IoT participants’ experience spanned industrial cyber security, 
electrical and mechanical engineering, and academia, with an 
average of 19 years of practice. Research ethics permission was 
obtained from the authors’ academic institutions prior to this 
research commencing, and participants consented to their 
contributions being included in this research. Interviews lasted 
between 75 and 120 minutes. 

 
 

4. IIOT INTEGRATION 
 
CPPS within the IIoT Ecosystem 
Fig. 2 summarizes the view of the expert panel that while CPS 
and CPPS are smart “Things”, the functionality resulting from 
the intersection of IT, OT, and AI is more relevant to business-
critical data. Limiting application in safety-critical functions is 
the issue that the system must not be allowed to self-determine 
whether an unsafe condition is present or is imminent. Rather, 
the SIS maintains functional safety when abnormal conditions 
are encountered. 
 
 
 
 
 
 
 
 
 
 

Fig. 2. CPPS, the intersection of technologies.  
 
Directions in the literature suggest that CPS behavior can 
achieve reliability through the use of error-correction 
algorithms, relying on a learned state acquired through Machine 
Learning (ML) [37]. However, as shown in Fig. 1, AI-related 
standards such as Functional safety and AI systems, and the 
methodology for Assessment of the robustness of neural 
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networks, are under development. Furthermore, as ML is often 
viewed as a black box function, verification can be difficult. 
Where the panel has observed algorithms running on smart 
devices in support of IACS, they are typically in non-hazardous 
discrete processes. Furthermore, the ML functions are simpler, 
rule-based algorithms used to measure physical change in 
support of business-critical processes. This panel view is that 
the absence of standardization is a current constraint on uptake. 
 
Smart devices refer to powerful microcontroller units that may 
include a central processor, memory, and have Real Time 
Operation Operating Systems (RTOS) installed, which can 
support algorithms, as well as inbuilt sensors and actuators. The 
smart devices are Internet enabled for communication with Fog 
and Cloud [38]. The algorithms can support self-determination, 
including performance, threat analysis, and CPPS re-
configuration.  Given this processing power and Internet-facing 
connections, onboard and networked threat detection is 
necessary, as these devices will be subject to IT-type attacks 
[39]. The literature identifies that device capability in IIoT is 
characterized by hardware that incorporates unique device 
identification, measurements (environmental sensors of non-
hazardous properties), data transfer, data processing, and 
actuation to control non-hazardous environmental factors [40]. 
 
Comparison of CPS and IIOT   
To assist the categorization of CPPS and IIoT, differences in the 
properties and functions flowing from the panel interviews are 
summarized in Table I. 
 
TABLE I.  CPPS AND IIOT ATTRIBUTES 
 

Property Function  CPPS Industrial IoT 

Data  Protocols OT or IoT 
i.e., 
EtherNet/IP 
or emergent 
IoT 
protocols. 

TCP/IP or UDP, 
and higher layer 
IoT adapted 
protocols. 

Model Business 
Processes 

Micro Macro 

Time Executio
n speed 

Real time 
e.g., milli 
seconds. 

Near real time 
e.g., seconds. 

Criticality Function
al priority 

Safety-
critical is not 
yet 
standardized.  

Will rely on 
IACS. 

Business-critical 
– IT type 
standardization. 

Informatio
n 

Feedback 
loops 

Low error 
tolerance 
(time). 

Higher error 
threshold.  

System(s) Function
al 
capability 

Sensing & 
actuation. 

Sensing 

Process Processin
g 
objective 

Correctness Performance 

Manageme
nt 

Life-
cycle 

Emergent 
device 

IT practices 

Manage
ment 

practices. 

Control Function
al 
objective 

Physical 
process 

Asset 
optimization 

 
In Table I, Micro describes functions concerned with specific 
processes or device clusters, whereas Macro refers to the entire 
IIoT ensemble as shown in Fig. 2.  
 
The view of the Delphi panel is that the goal of adaptive, self-
configuring, and self-organizing systems will necessitate 
change in the hierarchical automation architecture that specifies 
IACS integration. Future directions are elaborated in the next 
section.  
 
 

5. CPPS DATA MODEL 
 
Standardized Safety-Critical 
Fig. 3.A shows a four-layer representation of the ISA-95 
Automation Pyramid that generalizes IACS deployments. ISA-
95 is ratified under IEC 62264 as shown in the OT quadrant of 
Fig. 1. The Automation Pyramid (pyramid) is applicable to 
manufacturing processes, whether they are hazardous or not. In 
Fig. 3.B the pyramid is adapted following panel feedback.  
 
 

 
 

Fig. 3. CPPS compression of the Automation Pyramid.  
 
In the traditional pyramid presented in Fig. 3.A, data flow 
between Level 0 field devices such as sensors and actuators to 
programmable controllers (PLCs). At Level 1 those data are 
aggregated by the Supervisory Control and Data Acquisition 
System (SCADA), which centralizes plant processes. Where the 
implementation incorporates many devices, these devices may 
be grouped into semiautonomous subsystems, and networked 
with a Distributed Control System (DCS). The DCS supports 
data collection, analysis, and presentation of control 
information to human operators [41]. In Fig. 3.A, at Level 2 
data is further aggregated in the Manufacturing Execution 
System (MES), which assists production planning [24]. Data 
from the MES can also be fed into the Enterprise Resource 
Planning system (ERP), which integrates the aggregated IACS 
data with data from other departments to assist enterprise-wide 
planning.  
 
Based on the panel feedback, Fig. 3.B presents the integration 
of industrial computing that CPPS supports. Compression of the 
pyramid is achieved at Level 0, using computationally capable 
smart devices. The smart devices, including sensors and 
actuators, control processes at the process source (or at the Fog 
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layer) in concert with other connected smart devices. In 3.B, the 
MES is superseded by algorithmic analysis of Big Data (Level 
1), which is stored in Cloud data repositories at scale, which are 
referred to as Data Lakes (DLs) and used to inform business-
critical decisions. This can include the retention of temporal 
process data for use in future ML training to support AI.  
 
While Fig. 3.B illustrates the compression of hierarchies, in this 
research Fig. 4 extends the decomposition of automation [5] to 
better account for both safety-critical and business-critical data 
risk. The panel view was that specificity was necessary to 
account for the co-dependent risks that CPPS integration 
models present.  
 
Supporting the decomposition shown in Fig. 4 will be the 
implementation of meshed networks. Contextualizing mesh 
networks in CPPS, wireless network traffic is bridged from 
access point to access point, thereby reducing the need for 
ethernet cabling. Fig. 4 adapts the previous discussion of CPPS 
[5] to show IACS as a discrete safety function represented by 
the red boxes,  necessary to control and contain hazardous 
processes. 
 

Fig. 4. CPPS meshed networks. 
 
These safety-critical processes (red boxes) continue to be 
controlled by PLCs (Level 0), consistent with the practices set 
out in Fig. 3.A. The business-critical components, or modular 
CPPM that form the basis of CPPS, are shown in the yellow 
boxes. These will include the components supporting self-
organization; e.g., re-configuration of packaging and dispatch 
functions appropriate to parcel sizes, or warehousing 
requirements as raw materials for draw-down arrive on the 
premises.  
 
To manage risk in the self-organization paradigm, the safety-
critical processes should be ring-fenced (red boxes in Fig. 4) 
such that if variation in a process requires further V&V to be 
completed, its function is left unvaried, and the non-critical 
functions are positioned around it to support asset optimization. 
If V&V needs to be performed, the benefits of CPPS self-
organization may be reduced or negated. Moreover, this reduces 
the risk of CPPM exacerbating an existing hazard, the 
avoidance of which is a key tenet of IACS safety management 
[16]. 
 
The heterogenous nature and computation power of the devices 
within business-critical functions (yellow boxes in Fig. 4) may 
allow greater resilience in the business processes they support, 
through the addition of cost-effective CPPM-type redundant 

functions. Effectively, this is the business data equivalent of SIS 
supported by AI type algorithms.  
 
Also shown within the mesh environment in Fig. 4, as the 
circles above the business-critical functions, are the Fog, Cloud, 
and DLs endpoints that form part of the CPPS environment. 
These are third-party hosted services and will rely on AI 
algorithms to inform optimization. To secure data within IACS, 
operational networks are divided into zones, with data security 
policies specific to the security levels specified in IEC 62443, 
and appropriate to that zone’s safety integrity requirements 
[24]. In Fig. 4, the red dashed line surrounding the red boxes 
reflects a Demilitarized Zone; physical or logical protection that 
treats the CMMP, Fog, Cloud, and DLs as untrusted entities, 
thereby limiting their data exchange and thus their control over 
the safety-critical functions.  
 
To support CPPS-type mesh networks, research is underway to 
extend protocols such as LoraWan [42] from star to mesh 
deployments. As the mesh network likely represents a further 
erosion of traditional network borders, the encryption key 
management weaknesses in LoraWan will also need to be 
addressed [29]. CIA vulnerabilities have been identified in the 
DDS middleware that orchestrates the integration [31]. 
Therefore, key security considerations raised by the Delphi 
panel include the suggestion that networks may need to move 
from IT-type security protections in business-critical DiD, to 
more data-centric models like Zero-Trust. In Zero-Trust, 
segmented zones are created at a host or data layer to enforce 
CIA within  the CPPS model [8]. As the smart devices in Fig. 4 
are computationally powerful, greater encryption can be applied 
at a granular level to data appropriate to their criticality, with 
encryption proportionate to the risk in that data, as well as the 
consumer of that data. Many Delphi panel participants noted 
that many businesses’ security policies lack data classification 
and appropriate confidentiality mechanisms. To address this, 
encryption policies can be implemented based on classification 
across the smart devices, Fog, Cloud, and DLs applications. 
Cumulatively these protections will bolster I-type DiD, thereby 
reducing the risk of IT-type assets being used as the attack 
vector by threat-actors.  
 
 

6. CONCLUSIONS, FUTURE RESEARCH  
 
The introduction detailed the 5Cs in CPPS, centered on 
supporting adaption and flexibility in manufacturing processes 
[3]. Because CPPS is an emergent field within IIoT, 18 
heterogenous experts knowledgeable in IT, IACS, and IoT 
provided opinions on directions in CPPS, based on semi-
structured questions seeded from literature. Following the 
interviews, themes were coded, and the traditional Automation 
Pyramid was adapted to account for the hierarchical 
decomposition that emergent CPPS architectures will support 
(Fig 3.B). Additionally, prior work showing the decomposition 
of automation [5] was extended to better account for both safety-
critical and business-critical data risk, given the co-dependency 
risks that the CPPS integration model must provide for (Fig. 4). 

CPPS represents a conceptual paradigm for optimizing 
manufacturing, in which traditional hierarchies are replaced 
with more data-centric models. Realization of these objectives 
requires data to be fit for purpose in terms of ensuring robust 
SAIC is maintained, and that the new technologies improve the 
information state of CIA. In this research, these objectives are 
classified as safety-critical or business-critical respectively, for 
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which the former in particular challenges traditional IT-type 
DiD strategies. NIST [43] defines criticality “as the measure of 
the degree to which an organization depends on the information 
or information system”. Therefore, this research, by extending 
the conceptual CPPS model, contributes to the emerging body 
of knowledge covering risk, and the methods that will be used 
to measure a firm’s dependency on that CPPS system.  
 
As this research forms part of a program directed at developing 
methods that can help asset owners to enumerate risk in 
emerging fields such as CPPS, the topics discussed in this 
research will be subject to further expert refinement. This future 
refinement will progress the objective of developing a 
systematic design for evaluating risk in CPPS, as well as 
identifying the classes of risk protections appropriate to DiD 
across the multidisciplinary IIoT domain. 
 
This future scope of work will include the composition of the 
meshed networks to inform delineation of process boundaries 
necessary for production systems to re-organize around 
hazardous processes. This will assist the evaluation of risk 
necessary to ensure the integrity of safety-critical IACS 
processes, while optimizing the availability of business-critical 
data that IoT and CPS support.  
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