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ABSTRACT 

 

In this paper, data science is considered from a cybernetic 

perspective in two viewpoints. After a brief review of 

cybernetics, a partial conceptual view of a data science 

framework is provided. Several layers are identified, working 

from the software engineering life cycle macro perspective of a 

data analysis system, through production of a machine learning 

model to mine knowledge and predict business and product 

trends, to the micro perspective of a specific analysis, in this case 

using an artificial neural network. How the layers fit, individually 

and collectively, into a cybernetic system, identifying feedback 

loops and their interactions are described. Finally, the advantages 

and disadvantages of understanding the modern data science life 

cycle from the cybernetics perspective, and insights to be gained 

from this perspective are discussed. 

 

Keywords: Artificial Neural Networks, CRISP-DM Life Cycle, 

Cybernetics, Data Science, Machine Learning. 

 

 

1. INTRODUCTION 

 

Models that unify distinct phenomena can provide insights, and 

may lead to better understanding, ease integration or 

management of tools and processes, or allow improvements and 

optimizations. In this paper, data science is reconsidered in the 

light of a cybernetic model, in order to improve understanding, 

and with a goal of leading to enhancements of the data science 

process. 

 

“Cybernetics” comes from the Greek term, κυβερνήτης 

(kybernētēs), which denotes a pilot, governor, steersman, or 

rudder. It is the study of communication and control in systems 

(biological, engineered, and socio-technical), often characterized 

by feedback, time delays, and nonlinearities. The simplest such 

systems consist of a controller and a subsystem carrying out some 

function, whose state and outputs are observed by the controller, 

which uses that information in determining which control actions 

to take (or control signals to send).  

 

A thermostat is a classic example of a simple cybernetic system. 

In more complex systems, inputs to the controller may include 

environmental factors, and may have configurable parameters—

in the thermostat example, humidity could be an environmental 

factor, and a human-adjustable target temperature a configurable 

goal parameter. Second-order cybernetics also considers human 

controllers, who may be influenced by the controlled system, and 

are open to reflection (on the state of the system and 

environment) and reflexion (on internal state), so that the 

controller/observer becomes part of the process. 

 

Data science as a discipline uses mathematical, statistical, and 

computing techniques, many derived from artificial intelligence 

(AI), to analyze often massive sets of environmental, user-

generated, and/or experimental data. Individual data analytic 

models and techniques are parameterized, both by 

user/developer-adjustable hyperparameters (parameters at the 

higher/macro level), and by internal parameters (parameters at 

the lower/micro level), which in many AI-driven applications the 

tool modifies for improved results. AI-driven applications 

include neural networks, genetic algorithms, and simulated 

annealing with heuristics. 

 

Another dimension lies in textual and graphical visualizations of 

results, where displays and overall layout should themselves be 

tuned to optimize utility, comfort, and aesthetics. This interacts 

with user experience (UX) since what is important is to convey 

information. Visualizations and displays will be modified both 

for technical considerations and by user feedback, or possibly by 

experimentation with alternatives, using hypothesis-driven 

design (HDD) [1]. 

 

There are therefore several processes involved in a data science-

based application: choosing analyses, integrating results, tuning 

hyperparameters, carrying out analyses, and selecting display 

and layout of the results. Each of these can be viewed as a 

cybernetic system, and in addition, development of the system 

can itself be viewed as a cybernetic system, especially if an 

incremental iterative process such as agile development [2] is 

used. 

 

The rest of this paper looks further, first at cybernetic systems, 

and then at data science. It then assesses facets of data science 

from a cybernetic perspective, identifying feedback loops, and 

considering interaction of those loops. Finally, in the 

conclusions, it considers implications of these findings, and looks 

at possible future directions. 

 

 

2. CYBERNETIC SYSTEMS 

 

The birth of first-order cybernetics occurred in the United States 

and the United Kingdom in the aftermath of the Second World 

War. It is perhaps best understood as a transdisciplinary approach 

with foundations in dynamical systems theory, logic and discrete 

mathematical modeling, electrical and computer engineering, 

mechanical engineering, and neuroscience. The MIT professor of 
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mathematics, Norbert Wiener, introduced the term “cybernetics” 

in his 1948 book on the study of control and communication in 

the animal and the machine [3].  

 

Wiener’s ideas and insights contributed substantially to the 

emerging fields of neuroscience, analog computing, artificial 

intelligence, control theory, and communication theory. In 

addition, his mathematical work in probability theory provided 

the foundations for Claude Shannon to develop modern 

information theory [4].  

 

The 1956 book, An Introduction to Cybernetics, by W. Ross 

Ashby [5], a psychiatrist, further advanced the emerging 

cybernetics paradigm. Ashby is well known for formulating the 

crucial cybernetic notions of  

• the law of requisite variety (i.e., the greater the variety 

of actions available to a control system, the greater the 

variety of perturbations it is able to manage),  

• the principle of self-organization (i.e., a deterministic 

dynamic system evolves towards a state of equilibrium 

that can be described in terms of a basin of attraction 

of surrounding states), and 

• the principle of regulatory models (i.e., every good 

regulator of a system must be, or contain a model of 

that system). 

Ashby is also the inventor of the homeostat, an early cybernetic 

electro-mechanical system capable of adapting itself to its 

environment.  

 

During his 1949 lectures at the University of Illinois, John von 

Neumann shared his quest to design a system whose complexity 

could develop in a way analogous to living organisms subject to 

Charles Darwin’s notion of natural selection. Drawing on his 

expertise in physics, mathematics, and computer science, von 

Neumann explicated the logical requirements for machine self-

replication in a cellular automaton environment, thus articulating 

the notion of the universal constructor. The 1966 book, Theory of 

Self-Reproducing Automata, completed by Arthur W. Burks after 

von Neumann’s death, not only contributed to automata theory, 

but also to the study of “artificial life” and complex systems 

theory [6]. 

 

FOCS (First-Order Cybernetic System) 

In a first-order system, a subsystem receives inputs from its 

environment as well as from the controller. Control actions are 

based on the estimated state of the subsystem. The state 

estimation process is guided by system outputs (which in turn are 

inputs to the controller) and pre-programmed algorithms in the 

controller. This allows the subsystem to maintain an equilibrium 

or evolve toward another goal state. In either case, the subsystem 

should produce the intended external effects envisioned by the 

system designer. See Figure 1 below. 

 

 
 

Figure 1: FOCS 

 

The “bridge” figure between first-order and second-order 

cybernetics was Heinz von Foerster, a University of Illinois 

professor of biophysics and electrical engineering. Von Foerster 

founded the Illinois Biological Computer Laboratory (BCL) in 

1958. Over the next sixteen years, von Foerster and his 

colleagues carried out research in the areas of: 

• bionics (i.e., the application of biological methods and 

systems found in nature to the study and design of 

engineering systems),  

• bio-inspired computing (i.e., analyzing, formalizing, 

and implementing biological processes using 

computers), and  

• self-organizing systems. See [7]. 

 

According to Von Foerster, second-order cybernetics emerged as 

a consequence of the BCL research to develop a model of the 

human mind [8]: 

[A] brain is required to write a theory of a brain. From 

this follows that a theory of the brain, that has any 

aspirations for completeness, has to account for the 

writing of this theory. And even more fascinating, the 

writer of this theory has to account for her or himself. 

Translated into the domain of cybernetics; the 

cybernetician, by entering his own domain, has to 

account for his or her own activity. Cybernetics then 

becomes cybernetics of cybernetics, or second-order 

cybernetics. 

The new “cybernetics of observing systems” shifted the 

disciplinary focus to the social sciences, communication, and the 

humanities [9, 10, 11]. In particular, cyberneticists began to 

consider issues related to cognitive science, epistemology, and 

the philosophy of science, with clear mutual influence.  

 

SOCS (Second-Order Cybernetic System) 

Second-order cybernetics is often described as the reflexive 

practice of cybernetics. The cyberneticist and other humans in the 

loop are part of the system under study. They cannot be 

“abstracted” from the system, e.g., a command-and-control 

system for ballistic missile defense which includes human, 

information, and physical resources. 

 

Key features of second-order systems are reflection (on the state 

of the system and environment) and reflexion (on internal state) 

by the observer/controller. The observer/controller must be 

capable of  

• judgment in application of rules (similar to a first-order 

system),  

• reflection leading to dynamic control or rule 

modification, and 

• reflexion leading to changes in observer internal state. 

Generally speaking, the observed system is capable of broader 

interaction with the observer. 

 

As Figure 2 below indicates, the observer/controller receives 

inputs not only from the subsystem but also directly from the 

external environment and the internal state of the subsystem. In 

addition, the observer/controller is self-reflective. The 

observer/controller may also have direct impact on the external 

effects of the system. Finally, the subsystem is capable of self-

reaction, independent of the observer/controller. 

 

In 2021, Thomas J. Marlowe et al. proposed a transitional-order 

cybernetic paradigm [12]. A transitional-order system has many 

characteristics of a second-order system. However, the 

observer/controller has only limited capacity for reflection and 

none for reflexion. Examples include a system with an artificially 
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intelligent, self-modifying, and learning-capable observer/ 

controller. 

 

 
 

Figure 2: SOCS 

 

 

3.  DATA SCIENCE 

 

Data science is an interdisciplinary field to extract knowledge 

from very large data set (often called big data). Its techniques, 

approaches, and algorithms come primarily from statistics, 

discrete mathematics and operations research, and computer 

science, particularly artificial intelligence, while its applications 

span the gamut, from, for example, business analytics and 

economics, through social science and politics, to genetics and 

medicine. The goal of data science, particularly in business 

applications, is to improve decision making by basing decisions 

on insights from the big data, or, as in genetics, to enhance or 

extend knowledge and understanding of the discipline [13, 14, 

15].  

 

One important facet of data analysis is data mining. Data mining 

looks for patterns—typically unexpected—in various form of 

data (in a structured form such as a record in a relational database 

table, or an unstructured form such as text, graphics, or molecular 

structures). The patterns detected by data mining algorithms 

represent the knowledge, trends, predictions, anomaly detection 

of the big data.  

 

Machine learning is one of the techniques used for data mining, 

deriving mostly from artificial intelligence. Its techniques 

include association, classification, clustering, outlier/anomaly 

detection, neural networks, pattern recognition, genetic 

algorithms, and multivariable statistical analyses such as 

principal components algorithms [16, 17, 18]. 

 

 

4.  MACRO VIEW: CRISP-DM LIFE CYCLE 

 

To produce a software product, an organization follows a specific 

process or software engineering model to develop the software. 

These processes, of which agile development processes [19] are 

examples, follow the SDLC (Software Development Life Cycle) 

[20]. Analogously, the CRISP-DM (Cross Industry Standard 

Process for Data Mining) is widely used in data science projects 

and specifically for producing and tuning data mining and 

machine learning models [13]. CRISP-DM is also known as the 

data science life cycle. 

 

Figure 3 shows the CRISP-DM life cycle for a data science 

project. The first two stages involve business understanding and 

data understanding where the data scientist is trying to define the 

goals of the project by understanding the business needs and the 

data that the business needs for the project. Most of data comes 

from the organization internally and some data may need to be 

obtained externally. This leads to the data preparation stage. Data 

preparation consumes as much as 70% to 80% of the effort for 

the whole life cycle [13]. Data preparation includes data 

extraction, data cleaning, data transformation, data migration and 

integration, data normalization, data aggregation, and data 

loading. One of the challenges is the get the relevant data to build 

a data mining or a machine learning model. After the modeling 

stage, the data scientist as well as other users who will use the 

model need to evaluate the effectiveness or correctness of the 

model. The evaluation results may lead the data scientist to restart 

the life cycle if the model is not effective. If the results turned out 

to be feasible or useful, then it will be deployed to be used by the 

organization. With the passage of time, even well formulated 

models eventually need to be updated. The block arrows 

surrounding the diagram in Figure 3 indicate the iterative nature 

of the CRISP-DM life cycle. 

 

 

 
 

Figure 3: CRISP-DM Life Cycle 

 

Figure 3 describes the overall process of creating a data mining 

or machine learning model. This will be referred to the macro 

view of this model building process. 

 

In the following subsection, this macro view of the CRISP-DM 

process, a second order cybernetics system, is discussed. 

 

The Data Science Life Cycle as A Cybernetic System 

As mentioned in Section 2, a second order cybernetics system 

features feedback loops by the controller and the observer as well 

as the environment have direct impact on the behavior of the 

system. The observers are the data scientists and the users who 

evaluate the modeling process and effectiveness and usefulness 

of the resulting model. There are many feedback loops in the 

macro view. The double arrows between business understanding 

and data understanding indicate the interaction, back and forth 

between these two stages, and likewise the double arrows 

between data preparation and modeling. In each case, there may 

be many iterations between these two stages. As mentioned 

before, this is the most time-consuming part of the life cycle, as 

many experiments may need to be performed to select relevant 

data and come up with a useful model. Third, the users of the 

resulting model act as the observer of this model building process 

and will evaluate its effectiveness. A big feedback loop occurs 

when the observer chooses to restart the whole system. Finally, 

even though a model is deemed to be effective and useful, the 

internal evaluation of the model may not reflect reality when it is 

deployed in the real world. Deployment acts as the environment 
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that influences the effectiveness of the model. The influence 

includes (1) UX and feedback and (2) performance evaluation. 

 

Figure 4 shows the macro view of the data science life cycle by 

adding these two environmental factors (see the dashed arrows in 

the diagram)—the reflection of the cybernetic system. The whole 

life cycle is a second order cybernetic system. Each feedback 

loop can be viewed as a mini cybernetic system within the macro 

view. As described in Section 2, this is cybernetics of 

cybernetics. That is, it forms a second order cybernetic system.  

Within each stage, there may be process(es) within itself that can 

be viewed as a cybernetics system (reflexion of internal state). 

These cybernetic systems inside the macro view are the micro 

views of the data science life cycle from the cybernetics 

perspective. 

 

 

 
 

Figure 4: CRISP-DM as a SOCS 

 

  

5.  MICRO VIEW: ARTIFICIAL NEURAL NETWORKS 

 

There are many cybernetic systems (micro views) within a 

cybernetic system (macro view). The goal of the CRISP-DM 

process is to produce a data mining or machine learning model. 

In looking at the resulting model itself, an artificial neural 

network was chosen to illustrate the micro view of cybernetics. 

H. Cruse’s book [21] describes extensively the modeling of 

neural networks as cybernetic systems. The artificial neural 

network is presented below to illustrate the micro view of 

cybernetics within the macro view. 

 

An artificial neural network (ANN) or simply “neural network” 

is a machine learning technique. Although it is still unclear as to 

how the human brain works, it is well known that the brain 

consists of billions of brain cells called neurons. Scientists have 

a pretty good idea about the functions of a single neuron. The 

mystery is how these interconnected neurons form all the 

functions of the brain. Artificial intelligence uses the 

mathematical model of a neuron (artificial neuron) and its 

interconnections to form an ANN. Through the cybernetic 

mechanism of ANN, an ANN becomes a machine learning 

algorithm. Just like a biological neuron, the power of the ANN 

comes from the interconnections of many artificial neurons. 

Figure 5 shows the three major components of an ANN. 

 

 
 

Figure 5: An Artificial Neural Network 

 

A simple ANN consists of three major layers: an input layer, a 

hidden layer, and an output layer. The diagram shows the 

network consists of four neurons. Each neuron has its input and 

output. All the inputs and outputs of all the neurons form the 

input and output layers respectively. Depending on the 

application and the design of the algorithm, a user specifies the 

input and the output if it is a supervised learning model (e.g., 

classification application). A user specifies the input but lets the 

ANN generate the output if it is an unsupervised learning 

algorithm (e.g., clustering application). Consider a simple 

classification application: the user feeds many pictures of cats 

and dogs as inputs. The user trains the algorithm by defining the 

characteristic attributes for cats and for dogs. The output will 

classify a picture as either a cat or a dog as class labels. After the 

algorithm learns from the training data, a new picture of a cat fed 

into the model will have an output saying that the picture is a cat. 

Using the same example of cats and dogs for an unsupervised 

application—the user will input many cat and dog pictures into 

the network. The algorithm will not be able to say a picture is a 

cat or a dog since unsupervised learning does not use class labels. 

But a clustering algorithm will be able to put all the cat pictures 

in a cluster and all the dog pictures in another cluster (if the 

algorithms has been well trained, of course) based on the input 

characteristics. In other words, it distinguishes clusters with 

common characteristics but without names (class labels). 

 

An Artificial Neuron as a Cybernetic System 

Let us look at the cybernetic mechanism of a neuron. The 

mathematical model of a neuron is shown in Figure 6 below [22, 

23]. 

 

 
 

Figure 6: A Mathematical Model of a Neuron 
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A neuron can have many inputs (X1 to Xn). Each input has a 

weight (Wi, 1 ≤  i ≤  n) associates with it. The processor of the 

neuron is specified by: 

 

X = X1W1 + X2W2 + X3W3 + … + XnWn   

 

The output of the neuron (Y) is specified by the following 

activation function: 

 

Y = +1 if X ≥  θ or Y = -1 if X < θ, where θ is a threshold 

defined by the user. 

 

If Y = +1, the neuron fires and the output will become one of the 

inputs for another neuron. If Y = -1, the neuron will not fire, and 

it will not influence the neuron that connects to it. Whether a 

neuron fires or not depends on the inputs and their weight. As the 

neural network learns from the training data, the weight of each 

input is adjusted (reinforcement learning). This is the cybernetic 

mechanism where a feedback loop (back propagation) changes 

the internal parameters Wi. All these feedback loops were 

influenced by the hyperparameters of the whole network where 

the model is being trained. The hyperparameters changed 

because the whole network is being improved or modified due to 

evaluation of the results. 

 

Each of the feedback loop strengthens reinforcement learning for 

each neuron. A layer of neurons strengthens the network. It is not 

hard to imagine that the more layers of neurons, the more 

accurate or more patterns can be identified. In other words, more 

complex problems can be solved. An ANN with many hidden 

layers, as shown in Figure 7, is called a deep neural network 

(DNN) or deep learning neural network [24]. Although DNNs 

are typically feedforward networks (except for recurrent neural 

networks) in which data flows from input layer to different level 

of hidden layers and eventually to the output layer, the weights 

of the neurons are adjusted in response to the evaluation of the 

results. As demonstrated in the discussion on the workings of a 

single neuron, DNN is still a model with hyperparameters that 

will have influences on the internal parameters of different layers 

of neurons. Again, cybernetic mechanism is exhibited in DNN. 

 

 
 

Figure 7: A Deep Neural Network 

 

 

6.  INTERACTIONS BETWEEN MACRO AND MICRO 

VIEWS 

 

In this paper, the macro view of the data science life cycle from 

the cybernetics perspective is discussed. Within this macro view, 
there are many cybernetic micro views. In addition to tools and 

analyses such as neural nets, genetic algorithms, and 

multivariable statistical analyses (each of which may have 

multiple instances in a given application), there are also pre-

processing micro-views associated with data acquisition, 

cleaning, and evaluation, and “front-end” micro views related to 

visualizations, configurability, and UX. Additional views may be 

related to extra-functional concerns, including but not limited to 

quality control, security and privacy, and social and legal issues. 

 

Depending on the scope of the system, the scope and complexity 

of the goals of the application, and data issues including volume, 

velocity, variety, veracity, and value (the “5 V’s”) [25], it may be 

useful to identify collections of micro views as themselves 

constituting macro or intermediate level views—either 

horizontally (data-analysis-display-UX), or vertically, if the 

system requires addressing multiple challenges or more-or-less 

independently dealing with multiple data sets.   

 

Each of these views (i.e., micro, intermediate, and macro) will 

have its own feedback loop(s), and these loops will interact with 

one another. UX will feed back into display, quality control will 

feed back not only into the life cycle but also into selection and 

tuning of individual tools and analyses, and analyses will 

interact—a statistical principal components analysis will be 

affected by changes in data evaluation and filtering, and can 

affect neural network clustering algorithms, which in turn may 

affect display and visualization—leading to different feedback 

on the UX and displays. 

 

7.  CONCLUSIONS AND FUTURE WORK 

 

Data science encompasses data collection, transformation, 

modeling, data mining, and data visualization. It is an 

interdisciplinary field driven by various mathematical models 

and statistics, databases and data warehouses, data (structured 

and unstructured) mining, machine learning and deep learning, 

and artificial intelligence, as well as high performance 

computing. It is a rapidly growing field in this information age, 

where decisions are often driven by data. This paper considers 

the modern discipline of data science from the traditional system 

science perspective of cybernetics, both at the macro level in 

application development, and at a micro level, in the use of 

artificial neural networks. Past efforts that relate data science 

with systems theory include Berry et al.’s work synthesizing 

ideas from the mathematical theory of dynamical systems with 

learning theory to formulate data-driven models of complex 

systems [26]. 

 

The cybernetic perspective allows a unified approach for 

identifying feedback loops internal to a micro view, and the 

second-level, interaction feedback loops in intermediate and 

macro views. Understanding these dependencies allows for better 

planning and may help to prevent costly errors, delays, and 

rework in implementing the application. Section 4, for example, 

shows how applying this perspective allows one to integrate 

additional feedback loops or interactions into the development 

macro view of the system, so that, for example, UX is considered. 

It also unifies in a natural way agile development and hypothesis-

driven development, on the one hand, and iterative, AI-driven 

algorithms, on the other. 

 

This analysis is however not without cost. There is no tool or 

standardized approach for formulating or codifying the 

cybernetic perspective for an item—it requires an ad hoc and not 
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necessarily uniform manual analysis. Also, the different views 

and components range across first-order, transitional-order, and 

second-order systems, and identifying important feedback loops 

and their interactions may be tricky—especially considering that 

some of these may occur infrequently or as exceptions. Finally, 

it is also unclear whether the bulk of this analysis can be 

performed once, or whether or to what extent each new 

application will require substantial further investigation.  

 

Nonetheless, it is clear that cybernetics affords a coherent 

perspective on most data science activities and their interactions, 

from algorithm implementation through to the development 

cycle and UX. 

 

In future works, other views, some of which are mentioned in this 

paper, will be investigated as well as a large-scale application to 

identify feedback loops, interactions, and dependences. 
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