
How video injection attacks can even challenge state-of-the-art Face Presentation
Attack Detection Systems

Kévin CARTA
CLR Labs

La Ciotat, France

André HUYNH
CLR Labs

La Ciotat, France

Stéfane MOUILLE
CLR Labs

La Ciotat, France

Pr. Nadia EL MRABET
Ecole des Mines de St Etienne

Gardanne, France

Dr. Claude BARRAL
Bactech

Aix-en-Provence, France

Dr. Sébastien BRANGOULO
Unissey

Paris, France

ABSTRACT

Owing to the digitization of our society, recently rushed by
COVID 19 pandemic, remote biometrics, particularly facial
recognition, are emerging in plenty of applications that require
authentication at distance. These sensitive applications, mostly
used in banking, governmental, or insurance domains, are threat-
ened by the well-known presentation attack threat but also by
video injection attacks (modification of the images taken by
the camera by the attacker), which are now more accessible to
fraudsters as devices are not scrutinized and under their control.
We will see in this paper that even a simple photo can fool state-
of-the-art biometric attack detection systems. Thus, we will give

by malicious applicants.

Presentation Attack Detection (PAD) for Facial Recognition
Systems (FRS) has received important attention from the bio-
metric community since FRS cannot distinguish between bona
fide and impostor presentations. The usage of Presentation
Attack Instruments (PAI), whether they are simple such as
face printed or displayed attacks or more elaborated such as
3D rigid or silicone face masks, for instance, to fool FRS
has been demonstrated in many papers [7], [16], [10]. This
awareness about presentation attacks has led to the creation
of an international standard, the ISO/IEC JTC1 SC37 30107
[19], on PAD systems. Thanks to these researches and the
establishment of security evaluation methodologies based on

This work is being part of a Ph.D Thesis from Kevin Carta under
Prof. Nadia El Mrabet with SAS laboratory at Ecole des Mines de Saint
Etienne and CLR Labs

ISO/IEC 30107, the detection of presentation attacks has been
improved constantly to allow FRS complemented with PAD
systems to reach an acceptable level of security against this
type of attack.

Nevertheless, presentation attacks are not the only existing type
of attacks against FRS. Figure 1 describes all the possible
types of attacks against a facial recognition system. Due to
the digitization of our society, well helped by the COVID
19 pandemics, we have seen in the last couple of years the
emergence of digital solutions using remote biometrics and
particularly remote facial recognition. Remote biometrics is the
usage of a biometric recognition at distance in a non-trusted

and a passport for entering in a secured chat) in opposition to
face-to-face biometrics which is used in a trusted environment
(e.g., usage of a human supervised automated gate during border
control). These types of solutions are commonly used for digital
identity verification in domains of banking, governmental, or
insurance applications. Such solutions, where the application
requires a substantial level of security (e.g., open a bank account
remotely), perform remote identity proofing thanks to facial
recognition between the applicant’s face and the photo of its
ID document.

Fig. 1: Different types of attack on FRS[18]

1. INTRODUCTION

recommendations to avoid the usage of video injection attacks
environment (e.g., facial verification of user ID with a webcam

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

105 https://doi.org/10.54808/IMCIC2023.01.105
ISBN: 978-1-950492-71-8
ISSN: 2771-5914



Remote FRS are of course vulnerable against presentation
attacks like face-to-face FRS. Still, they are also vulnerable
against video injection attacks, described as type 2 attacks in
Figure 1. Video injection attacks consist of modifying the data
taken by the camera (i.e. the biometric data capture system)
with malicious data. This attack can consist in replacing the
images taken by the camera or overwrite them, for example.
Thus, as FRS is used remotely, it means that the attacker can
use its device to build an attack on the facial recognition. Having
control of the device (e.g., its smartphone or computer) allows
the fraudster to change the original behavior of the device. For
instance, the attacker can install a virtual camera on his computer
which will grant him the opportunity to send chosen images and
the targeted application will think that it is receiving images
from a real webcam.

Video injection attacks are historically related to the domain
of cybersecurity and penetration testing [12]. However, the Eu-
ropean cybersecurity community and national security agencies,
such as the French ANSSI (Agence Nationale de la Sécurité des
Systèmes d’Informations) [1] or the German BSI (Bundesamt
für Sicherheit in der Informationstechnik), are in line with the
fact that mobile applications and web applications can’t be
considered as secured, and finding vulnerabilities is always a
question of time. Thus, as these web and mobile applications
can’t be deemed fit to trusted environments, biometric devel-
opers need to implement biometric security features to prevent
video injection attacks.

In this paper, the Face PAD solution from the French company
Unissey will be taken as an example to see if state-of-the-art
PAD solutions are resistant against video injection attacks. Unis-
sey has developed a Face PAD system, based on Deep Learning,
evaluated on its security level by two different laboratories with
zero percent presentation attack success rate. Moreover, Unissey
is one of the first PAD developers to consider this new threat
as video injection attacks, and has developed countermeasures
to mitigate this threat.

This paper primarily addresses the following question: ”How
vulnerable are state-of-the-art Face PAD systems to video injec-
tion attacks?”. Specifically, we investigate the vulnerability of
Unissey’s PAD web-browser application to presentation attacks,
(i.e.:simple, as well as more elaborated video injection attacks)
on two different devices, computer and smartphone. This spe-
cific PAD use case has been chosen for this study because it is
one of the top-level solutions from one of the first companies
to develop security features preventing video injection attacks.
Our study goal is focused on the following targets:

1) Assessing the performance of what seems a systematic
FRS-vulnerability study linking video injection attacks
with advanced PAD system.

2) Demonstrating the real need to develop a biometric-based
countermeasure against emerging threats, as mobile appli-
cations and web applciations can’t be considered as trusted
environments because of the presence of Information Tech-
nology (IT) vulnerability that allows attackers to make
innovative attacks such as video injection.

In Section 2 we provide brief reviews of other researchers’
relevant works on presentation attacks and video injection
attacks. The robustness of Unissey against presentation attacks
and simple video injection attacks is described in Section 3.
An efficient video injection attack against state-of-the-art PAD
systems and the experimental results are presented in Section
4. Eventually, Section 5 summarises this study, the conclusions

https://unissey.com/
Level 2 conformance with iBeta (USA) and CLR Labs (France)

drawn from the results, and an outlook on future developments.

2. STATE-OF-THE-ART

2-A. Presentation attacks and their detection

Most common attacks against FRS are known as presentation
attacks. An attacker can fool the FRS simply by presenting a
face artifact of a legitimate user, which can be easily created
thanks to the availability of face images and videos of a person
on the internet and social media. These attacks have attracted
the attention of biometric experts and have even given birth to
a specific international standard, the ISO/IEC 30107.

Presentation attacks on FRS are made with artifacts, or PAIs,
which usually belong to one of these categories:

• Face printed [14]
• Face displayed on a screen [14]
• Paper face mask
• 3D face mask [15, 17, 8]

Fig. 2: Examples of face PAI

Of course, each artifact requires different expertise, cost, or even
biometric sources (biometric traits of the victim needed to create
the artifact, e.g., a photo or a face 3D scan), and obtaining each
artifact does not imply the same level of difficulty. For instance,
it is far easier to possess a printed photo of the victim’s face than
a 3D silicone mask of its face, which requires measurements of
the victim’s face and a manufacturing cost of several thousands
of euros by a high qualified cinema makeup artist.

Many researchers took this approach for years to evidence the
efficiency of these artifacts’ attacks on FRS if the latter are not
complemented with PAD [7, 16, 10].

Because of this threat, PAD development has been a prior topic
for the biometric community. The improvement of Artificial
Intelligence (AI) and many years of research have given rise to
the emergence of plenty of methodologies to detect presentation
attacks on FRS. Here are some existing, but non-exhaustive,
examples in the literature:

• Liveness detection, or so-called ”Passive PAD”. Some tools
can detect liveness in images without asking the user for
any challenge. In [13], the authors show that it is possible
to detect the blood pulse on the face with a classical
camera. Unissey uses this technique to detect presentation
attacks.

• Challenge-Response, or so-called ”Active PAD”. This tool
consists in requesting a specific challenge to the user (e.g.,
turning the head right or eyes blinking) and detecting the
relevant answer from the user (e.g., the user has turned his
head right or has blinked eyes) [20, 22]

• Deep Learning algorithm trained with datasets of real faces
and datasets of different kinds of face PAI (Unissey is an
example of this kind of PAD solution). The algorithm is

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

106



then able to distinguish between a real face and a 3D rigid
mask for instance [2, 3]

• Specific Hardware Materials. In some use cases, having
specific hardware materials can help to detect artifacts. In
[9], the authors show that having a specific camera, called
”Time-of-Flight” camera, helps to get 3D information
about a face. ”Structured light” is another technique to
obtain 3D information with an IR camera as described in
[21].

2-B. Video injection attacks

Code injection is the act of introducing a malicious script
into an application source code to modify its normal behavior.
In cybersecurity, injection is particularly used by penetration
testing laboratories, and hackers, to find vulnerabilities in a
system. One of the most used injection attacks is SQL injection
which consists of injecting code snippets to get information from
a database fraudulently [5].

For facial recognition systems, the injection has an interest for
the attacker if he can inject chosen images in the system so that
the system uses these images instead of the ones taken by the
camera: this is a video injection attack. In this case, the attacker
does not only inject code to get information (e.g., a password)
but does also inject data.

Since video injection attacks did not have a huge interest for
attackers in the past, as biometrics were mainly used in trusted
environments or under human scrutiny, the current emergence
of remote biometrics opens for the attacker the choice of a
selected device (enabling behavior modification) and makes
video injection attack more accessible. Although the criticality
of the emergence of threats linked to remote biometrics has
been recently reported in general terms (e.g.: through accessible
reviews), we are familiar with only two main focused research
papers on this subject.

The first one [11] talks about the feasibility of video injection
attacks on medical material. In this paper, the authors do not
describe how to make a video injection attack but propose a
blockchain framework to prevent false medical video injection
in the health domain.

The second one deals with facial recognition. In [4], the authors
describe a video injection attack onto a secured digital identity
verification mobile application that uses facial recognition to
verify that the applicant is the legitimate holder of the passport.
The paper highlights the fact that video injection is a new threat
against remote biometrics and particularly its usage in identity
proofing solutions, as described in our introduction. However,
this paper does not mention the name of the targeted mobile
application and does not explain in detail how to implement the
video injection attack on the Android device, which makes the
attack unrepeatable.

To overcome the above limitations, the purpose of this article is
to take a specific example used in the real-world market, here the
Unissey PAD solution, and to illustrate how potential impostors
can implement video injection attack to fool state-of-the-art
biometric securities (i.e., PAD solutions) which can be integrated
into sensitive applications featuring identity verification for
banking or governmental services for instance.

3. ROBUSTNESS OF UNISSEY’S APPROACH

Structured Query Language (SQL): domain-specific language used in
programming and designed for managing data

The security of an application using facial recognition relies on 3
components: PAD, the detection of any virtual device which can
modify the original device behavior (e.g., a virtual camera), and
the classical IT security features (e.g., source code obfuscation).
Figure 3 highlights the different levels of adhesion surface to
biometrics for these 3 security components.

Fig. 3: Structure of security features in application using facial
recognition

First of all, as described in the introduction, the choice of
Unissey’s PAD system for this paper has been made because
Unissey’s solution is a state-of-the-art system to prevent presen-
tation attacks (the most evaluated on the market) and is one of
the first PAD systems to implement countermeasures for video
injection attacks using external resources. Having as a targeted
application a solution that implements the first two main security
level components, as described in Figure 3, will help this paper
to highlight the feasibility and danger of video injection attacks.

Then, before explaining what are the different attacks that we
have realized on the Unissey PAD system, it is essential to
understand how the Unissey solution operates. This tool is a
so-called ”passive” PAD system, meaning that the user does
not have to do anything during the process. The usage of the
product consists in launching the camera and putting the face
in a target on the screen, as seen on Figure 4. Then the system,
within a single second, acquires a few images of the user’s
face and performs a presentation attack detection thanks to a
deep learning algorithm trained with consequent datasets of real
human faces and face artifacts.

Eventually, the Unissey PAD system application can be used via
a web browser installed on a computer (with a webcam) or a
mobile device.

Fig. 4: Transaction on Unissey PAD system

3-A. Presentation attacks

As explained in the introduction, Unissey has been evaluated
by two different laboratories on presentation attack detection on
a substantial level and for both laboratories, 0% of attack has
been successful. In order to check these results, we firstly ex-
periment attempts to fool the Unissey PAD system by achieving
presentation attacks.

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

107



Figure 5 shows the prepared 5 different presentation attacks
used:

1) A face photo printed
2) A 3D rigid face mask
3) A face video displayed on a smartphone screen
4) A 3D latex face mask
5) A 3D silicone face mask

Fig. 5: PAI used against Unissey PAD system

Each attack has been presented 12 times and the environment
has been changed for each presentation: each attack has been
made on four different cameras (an embedded laptop camera,
an iPhone 5S front camera, a Samsung Galaxy S10 front
camera, and a Logitech C920 webcam) with 3 different lighting
conditions (indoor with around 100lux illuminance, indoor with
around 500lux illuminance and outdoor with around 1500lux
illuminance). The attack results are presented in Table 1.

Attacks Biometric source Success rate
Photo printed A photo 0/12 = 0%

Video displayed A video 0/12 = 0%
A 3D rigid face mask A 3D face scan 0/12 = 0%
A 3D latex face mask Face measurements 0/12 = 0%

A 3D silicone face mask Face measurements 0/12 = 0%

Table 1: Results for presentation attacks

No scenario has been able to trick the system regardless of the
light environment or the quality of the camera, thus confirming
Unissey’s robustness against face presentation attacks, in line
with the announced results of the two prior evaluations of this
product.

3-B. Simple video injection attacks

The most straightforward video injection attack consists of using
a tool able to simulate a real webcam’s behaviour and send
chosen images of a screen or a video file. Such a tool can be a
virtual camera, which is a software able to be seen as a camera
by a website or a computer application and which can use video
file or replay a screen as a data source. Alternatively, the tool
can be an external capture card, which is a hardware device
able to take any data source via a HDMI cable (e.g.: a laptop
screen) and the output of the device is seen as a camera by the
computer used for the attack. Figure 6 is a diagram of how the
video injection attack is achieved on a computer thanks to a
virtual camera or an external capture card.

To check if the video injection was possible on the Unissey web-
browser application, we used the simplest video data possible for
our attack: a video of a victim’s face without any modification
or editing. To test the feasibility of video injection, we selected
5 different general public web-browsers:

• Google Chrome on Windows 10
• Edge on Windows 10
• Opera on Windows 10
• Mozilla Firefox on Linux Ubuntu
• Chromium on Linux Ubuntu

Fig. 6: Video injection attack with a virtual camera

Eventually, we used 4 different attack paths: 3 different virtual
cameras and 1 external capture card.

• OBS virtual cam (virtual camera)
• Manycam (virtual camera), see Figure 7
• Akvcam (virtual camera)
• Elgato Camlink (external capture card)

Fig. 7: Attack stages with Manycam virtual camera

As previously described, we used a video of a face via each tool
using each web browser (when it was possible) and we got the
attack results presented in Table 2.

Web-browser(OS) OBS Manycam Akvcam Camlink
Chrome(Win 10) Failed Failed Incompatible Failed

Edge(Win 10) Failed Failed Incompatible Failed
Opera(Win 10) Failed Failed Incompatible Failed
Firefox(Linux) Failed Incompatible Failed Incompatible

Chromium(Linux) Failed Incompatible Failed Incompatible

Table 2: Results for simple injection attacks

As can be seen, no injection attacks fooled the Unissey PAD
system which means that in each configuration, the system has
detected a virtual camera. This is because Unissey has developed
a virtual camera detection method in addition to its PAD system
which is not the case for the majority of the PAD systems on
the market. On the flip side, we can therefore, assume some (if
not all) of our attacks would be effective on PAD systems with
no embedded added virtual camera detection system.

However, we will see in Section 4 that using a virtual camera
isn’t the only way to make an injection, meaning the presence of
an effective virtual camera detection is not sufficient to prevent
video injection attacks.

4. AN EFFECTIVE ATTACK AGAINST
STATE-OF-THE-ART PAD SYSTEMS

DISCLAIMER: The vulnerability exploited here concerns all
web browser Android applications. It means that even if Unissey
has been taken as an example in this paper, this vulnerability is

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

108



exploitable for all web-browser PAD applications and is not a
vulnerability of the Unissey PAD system. It is worth noting that
the French ANSSI has been the first to take into account video
injection attack threat in their remote identity proofing using
FRS certification scheme[1] and has led to the integration of
the video injection threat in the ETSI remote identity proofing
certification scheme [6].

Using a virtual camera software or a capture card is difficult
to set up on a mobile device. Yet, it doesn’t mean that video
injection attacks are not possible on such devices, it just means
that the way to inject images isn’t the same. We shall report in
this section how to make a video injection attack in a mobile
web browser application and discuss if this ends up fooling the
Unissey PAD system. To experiment with this attack, we used
a Samsung Galaxy S8 with Android 9.

4-A. Methodology of video injection on mobile web browser

Making a video injection attack on a mobile device isn’t as
simple as installing virtual camera software on a computer.
Indeed, it requires from the attacker some knowledge in mobile
penetration testing (i.e., knowledge on mobile hacking and
mobile application reverse engineering). Making injection here
will not consist in creating a new flow of images via a tool like
a virtual camera, but it consists in modifying the image flow
taken by the legitimate camera. In this attack, we will overwrite
images taken by the camera with chosen images (the images
of our attack) before they arrive in the targeted web browser
mobile application. The attack is done during the communication
between the camera and our mobile app as described in Figure
8.

Fig. 8: Injection attack on a mobile device

To be able to inject images in mobile web browser applications,
we need to have:

• An Android mobile device. In our paper, we have taken
a Samsung Galaxy S8, but every Android device can be
used. In theory, video injection attacks should be possible
on IOS devices but we have not tested it.

• A TWRP ROM image (binary image of the Android
OS) for the Android Device with Magisk. TWRP and
Magisk allow the user to root its smartphone (the rooting
process is explained in the next paragraph).

• Odin. Odin is software that permits to flash ROM image
on an Android device.

https://twrp.me/
https://github.com/topjohnwu/Magisk
https://www.odinflash.com/

• Jadx-Gui. Jadx is an open-source Dex to Java decompiler.
It allows anyone to get the source code of any apk file
(format of an Android mobile application).

• Frida. Frida is an open-source toolkit that enables its user
to inject script and to hook any function. The hooking
process is an operation where function calls are intercepted
by a program to modify their behavior. Frida is built on
a server-client architecture. To operate, the smartphone
has to be connected to a computer via USB. The user
installs and executes the server-side of Frida into the
smartphone and he has to install the client-side of Frida
on his computer.

• Android Debug Bridge (ADB). It is a versatile command-
line tool that lets you communicate with a device. The
ADB command facilitates a variety of device actions, such
as installing and debugging apps, and it provides access to
a ”super-user” shell, if the device is rooted, that you can
use to run a variety of commands on a device.

• A general public web browser mobile application. The
choice of the web browser is not important as the way to
get the images from the mobile camera is the same for all
the web browsers.

The first step to make the injection possible is to create a root of
the smartphone device. Rooting consists of flashing a new ROM
image on which the user will have ”super-user” access. Having
a ”super-user” access means that the user has more permissions
on the smartphone than he would have on a standard device.
In our case, it will allow us to execute the Frida server in the
smartphone (executing a program into an Android device is not
permitted with standard access). However, note that Frida can
be used without rooting (thanks to a tool called Frida gadget)
but its usage is more complicated and isn’t as powerful as using
with rooting.

To root the Samsung Galaxy S8, we have first unlocked the
OEM (Original Equipment Manufacturer) option in the de-
veloper parameters of the device. This action gives the user
permission to flash a new ROM image on the device. Then,
we have flashed the TWRP ROM image with Odin and install
Magisk on our device. Note that if rooting can be seen as a
complicated task, it is accessible to anyone as you can find
plenty of ROM images and tutorials on the web for any Android
device.

Once the smartphone is rooted, Frida can be downloaded and
installed on the computer and in the device (generally, we store
Frida in the directory /data/local/tmp).

Then, the most important step of the attack consists in finding
the function used by the web browser application which calls
the device camera. To find this function, we have to reverse
engineer the mobile application, with Jadx, to obtain the source
code. Once it is done we have find in the code how and where
the camera is called. However, knowing about the internals of an
Android camera operations can make this research far quicker
since the attacker can search for a specific function name or
object.

To get images from the camera, a mobile application has to call
the Android camera API. Android camera API is the interface
between a mobile application (whether it is a native OEM
application or an installed application like our web browser
application) and the hardware sensor of the camera. So, when
it needs to open the camera to take a photo or a video, the
mobile application calls the camera API and asks for images
with different parameters like: pixel format, size of the image,

https://github.com/skylot/jadx
https://github.com/frida/frida

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

109



front or back camera, etc.

Android devices possess 2 different camera APIs: Camera1 and
Camera2. Camera1 is the old camera API that Camera2 slowly
replaces, but as some developers prefer the old API and old
smartphones are not compatible with the new one, Camera1
is still used. In our research, we have voluntarily chosen an
old version of our web browser application (a 2018 version)
to select the Camera1 interface. Because the update of the web
browser mobile application is not mandatory, the attacker has the
opportunity to use an older version of his app. Making injection
on the Camera1 interface is far simpler as images transit in clear
as ByteArray between the camera and the mobile application.
At the same time, Camera2 transfers images via buffer memory,
making injected images preparation more laborious.

The mobile application asks for images through Camera1 API
via the function onPreviewFrame. This function returns two
objects: a ByteArray which is the image taken by the camera,
and an object called ”camera” which groups all parameters of
the camera (front camera or back camera and size of image).

The video injection attacks consist in finding this particular
function in the source code and making a hook of this function
to overwrite the images. Once the function has been found, we
have to use Frida to make the hook.

To use Frida, we have to execute frida-server in the smartphone
with the ADB command line (go in /data/local/tmp and execute
./frida-server). Then the hook is made thanks to a JavaScript
file which will be injected by Frida on the client-side with a
specific command line (on our computer connected via USB to
the mobile device). Successive hook steps are summarized in
Figure 9.

In the script, we need first to find the context of our
web browser mobile application. The context which allows
Frida to attach the JavaScript file in the targeted mobile
application. To do it we can use this code lines: const
ActivityThread = Java.use(”android.app.ActivityThread”); and then
const Application = ActivityThread.currentApplication();. Thanks to
these lines, it will be able hook any function of our web
browser mobile application with Frida when the applica-
tion is opened. As we know where the onPreviewFrame()
function is located, we have then to declare the Class
where the function is called (e.g., const VideoCaptureAndroid =
Java.use(”org.webrtc.videoengine.VideoCaptureAndroid”);) and to im-
plement our hook of the function onPreviewFrame() (VideoCap-
tureAndroid.onPreviewFrame.implementation = function(frameBytes,
camera)). Thanks to these steps, we are able to modify the
behavior of the original function and thus to modify the object
frameBytes which is the image taken by the camera.

Fig. 9: Hook of onPreviewFrame()

Before replacing frameBytes with the images of our attack, we
have to know the size of the images taken by the camera and the

pixel format (i.e., how the image is encoded). In the source code
of the web browser mobile application, the return value of the
function getBitsPerPixel gives the nature of the format image.
In our case, the value returned was 17 which corresponds
to NV21 image format according to Android developer
documentation. Then we can obtain the width and height
of the image thanks to the commands console.log(”Width:”
+ camera.getParameters().getPreviewSize().width.value);
and console.log(”Height:” + cam-
era.getParameters().getPreviewSize().height.value); which for
Unissey PAD system gave us a size of 1280x720 pixels.

Once we have these values, we have to decompose our video
into images in raw format (with no compression) with color
encoded in NV21 at size 1280x720 pixels. This can be done
thanks to the tool Ffmpeg for instance.

Then, we have to store our images in the files directory
of our web browser mobile application (e.g., /data/data/web-
browser/files) and call them via our JavaScript file within
the onPreviewFrame() implementation to overwrite in live the
images taken by the camera.

We can share our injection JavaScript file on our e-mail address
on demand to replay video injection and to avoid writing here
all the needed code lines to make the video injection. Due to
the sensitive nature of this file, we can’t share it on our Github
account.

4-B. Video injection attacks

Thanks to the work described in the last subsection, we are now
able to inject any images on any website on which we would
use the camera. Thus, we can inject any images in the Unissey
PAD system which will think that it receives legitimate images
from the smartphone camera.

The purpose of the attacks that we will consider would be to
impersonate the identity of a specific victim. In other terms, we
will consider that the attacker is an impostor. Performing a video
attack requires a biometric source from the victim: this one can
be a photo, a video, a face scan, etc. Of course, each biometric
source does not require the same effort from the attacker: while
a 3D scan of the face of the victim is barely impossible to obtain,
finding a photo or a video is simple at the age of the internet
and social media.

In this paper, we have considered 5 different attacks, 3 made
with a simple photo of the victim’s face and 2 made with a
video of the victim’s face.

Attack 1 — Simple Photo. The first attack consists in
injecting a single, static, photo of the victim’s face.
Attack 2 — Face Reenacted. Face reenactment consists
in using a face image and reproducing face movements
of a specific face video with the photo. In our attack, we
have considered a face image and we have made the eyes
blink. Many mobile applications or open-source can do
face reenactment: we have used Avatarify.
Attack 3 — Low Quality Deepfake. A face deepfake
video attack consists in putting the face of a subject
A, the victim, on the face of subject B, the attacker,
during a video. Thanks to this process we can recreate the
movement of a face (subject B, the attacker) with another
one (subject A, the victim). Our Low-Quality Deepfake

https://developer.android.com/
https://ffmpeg.org/
kevin.carta@cabinet-louis-reynaud.fr

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

110



attack is done with an Android mobile application named
Reface App. To create the attack, the impostor gives to the
application a video of his face and a photo of the victim’s
face and the app recreate a video in a few seconds which
is the same as the one given by the attacker but his face
has been replaced by the victim’s one. This deepfake is
qualified as ”low quality” because the result obtained is
low resolution and got plenty of defaults due to the data
scarcity of the biometric source (a single photo). Yet, in
most FRS, even if the resolution is low and the result quite
disappointing, the match between a legitimate photo of the
victim’s face and the deepfake is a success. Results are
visible on Figure 10.

Fig. 10: On the left the attacker, in the middle 3 frames from
the Low Quality Deepfake attack, on the right the victim

Attack 4 — Simple Video. The fourth attack consists
in injecting a single video of the victim’s face. In our
paper, we have used video of faces registered during video
conferences.
Attack 5 — High Quality Deepfake. High-quality deep-
fake is the same kind of attack as the low-quality deep-
fakes: the victim’s face is put on the attacker’s face within a
video. But in this case, the biometric source of the victim’s
face is a video (we have used face’s video registered during
video conference). Moreover, to create these attacks, we
have used an open-source deep-learning deepfake tool
called DeepFaceLab with which we trained a specific
model for each victim. Each model has required 3 full
days of work with a computer equipped with an Nvidia
RTX 3090 graphics card. Results are visible on Figure 11.

Fig. 11: On the left the attacker, in the middle 3 frames from
the High Quality Deepfake attack, on the right the victim

4-C. Results

We have considered 4 different victims and 2 different attackers
for each attack, as presented in Table 3. The attackers and
victims have been associated according to their gender.

Once all the video attacks have been prepared, we have de-
composed each of them with FFmpeg at 24 Frame Per Second
(FPS) in .raw format with color encoded in NV21 format at
size 1280x720 pixels according to the parameters notified during
injection set up (Section 4.A). For each attack, we have obtained
the results presented in Table 4.

Age Gender
Victim 1 25 Female
Victim 2 47 Female
Victim 3 21 Male
Victim 4 45 Male

Attacker 1 22 Female
Attacker 2 24 Male

Table 3: Victims and Attackers used for video injection attacks
on mobile web-browser application

Attack Victim 1 Victim 2 Victim 3 Victim 4
Simple Photo Success Success Success Success

Face Reenacted Success Success Success Success
Low Quality Deepfake Success Success Success Success

Simple Video Success Success Success Success
High Quality Deepfake Success Success Success Success

Table 4: Results of video injection attacks on mobile web-
browser application

As can be seen from Table 4, all the prepared attacks have been
able to fool the Unissey PAD system. This underlines the fact
that once the injection method has been well set up, it is more
complicated to detect it. It means that even if the PAD system is
highly secured against presentation attacks with features such as
virtual camera detection or emulator detection been set, injection
attacks are still possible and even a single image photo allows
an impostor to steal the victim’s identity.

Eventually, we can understand here that the real vulnerability
is exploited in the Camera API architecture which means that
if Unissey can be fooled, as we have shown in this paper, it
is likely also possible for each PAD system or Android mobile
application using facial recognition.

But, because it is not possible to uniquely identify the camera
in the current smartphone architecture, countermeasures have to
be placed within the PAD system.

5. CONCLUSION AND FUTURE WORK

The development of remote FRS used by remote digital identity
verification solutions paves the way for new attacks using mobile
devices, which are more accessible for attackers because the
mobile device is under the attacker’s control with no scrutiny
from any authority. We have seen that injection may require
specific expertise in mobile hacking for PAD systems that
develop virtual devices detection solutions (levels 1 and 2
according to Figure 3). However, as this virtual devices detection
is not implemented by the majority of PAD systems on the
market, video injection attacks are accessible to anyone for these
systems.

It is of paramount importance for the biometric community to
consider this new threat which can challenge the security of any
system using remote facial recognition.

Since current device architecture can’t make mobile and web
applications trustworthy, the integration of randomness in image
capture, to prevent the attackers from preparing in advance their
video attacks, is a preliminary way to prevent injection. By doing
this, developers would force attackers to use live methodologies
to create video attacks, which would complexify the attackers’
implementation.

In our upcoming work, we plan to focus on new counter-
measures to overcome this new breach avenue facing face
recognition. We will focus our interest on how to prevent

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

111



injection, irrespective of the type of device used by the attacker
to make a video injection attack.

6. REFERENCES

[1] ANSSI. “Référentiel d’exigences ANSSI - Prestataires
de vérification d’identité à distance - version 1.1”. In:
(2021). URL: https://www.ssi.gouv.fr/uploads/2021/03/
anssi- referentiel%5C exigences- pvid- v1.1.pdf (visited
on 03/23/2021).

[2] Sushil Bhattacharjee et al. “Recent Advances in Face
Presentation Attack Detection”. In: Handbook of Biomet-
ric Anti-Spoofing: Presentation Attack Detection. Ed. by
Sébastien Marcel et al. Cham: Springer International
Publishing, 2019, pp. 207–228.

[3] Ying Cai et al. “A fast and robust 3D face recognition
approach based on deeply learned face representation”.
In: Neurocomputing 363 (2019), pp. 375–397. ISSN:
0925-2312. DOI: https://doi.org/10.1016/j.neucom.2019.
07 .047. URL: https : / /www.sciencedirect .com/science/
article/pii/S0925231219310215.

[4] K. Carta et al. “Video injection attacks on remote digi-
tal identity verification solution using face recognition”.
English. In: IMCIC 2022 - 13th International Multi-
Conference on Complexity, Informatics and Cybernetics,
Proceedings. Vol. 2. 2022, pp. 92–97. URL: www.scopus.
com.

[5] Shreya Chowdhury et al. “A Comprehensive Survey for
Detection and Prevention of SQL Injection”. In: 2021
7th International Conference on Advanced Computing
and Communication Systems (ICACCS). Vol. 1. 2021,
pp. 434–437. DOI: 10 . 1109 / ICACCS51430 . 2021 .
9442012.

[6] ETSI. “TS 119 461: Electronic Signatures and Infrastruc-
tures (ESI); Policy and security requirements for trust
service components providing identity proofing of trust
service subjects”. In: (2021).

[7] Anas Husseis et al. “A Survey in Presentation Attack and
Presentation Attack Detection”. In: 2019 International
Carnahan Conference on Security Technology (ICCST).
2019, pp. 1–13. DOI: 10.1109/CCST.2019.8888436.

[8] Shan Jia, Guodong Guo, and Zhengquan Xu. “A survey
on 3D mask presentation attack detection and counter-
measures”. In: Pattern Recognition 98 (2020), p. 107032.
ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.
2019 . 107032. URL: https : / / www. sciencedirect . com /
science/article/pii/S0031320319303358.

[9] Simon Meers and Koren Ward. “Face Recognition Using
a Time-of-Flight Camera”. In: 2009 Sixth International
Conference on Computer Graphics, Imaging and Visual-
ization. 2009, pp. 377–382. DOI: 10.1109/CGIV.2009.44.

[10] Zuheng Ming et al. “A Survey On Anti-Spoofing Meth-
ods For Face Recognition with RGB Cameras of Generic
Consumer Devices”. In: (Oct. 2020).

[11] Ahmed Mohiuddin. “False Image Injection Prevention
Using iChain”. In: Applied Sciences 9 (Oct. 2019), pp. 1–
11. DOI: 10.3390/app9204328.

[12] B. Mueller, S. Schleier, and J. Willemsen. Mobile Secu-
rity Testing Guide. OWASP, 2019. Chap. Android Testing
Guide.

[13] Xuesong Niu et al. “Continuous heart rate measurement
from face: A robust rPPG approach with distribution
learning”. In: 2017 IEEE International Joint Conference
on Biometrics (IJCB). 2017, pp. 642–650. DOI: 10.1109/
BTAS.2017.8272752.

[14] K. Patel, H. Han, and A. K. Jain. “Secure Face Unlock:
Spoof Detection on Smartphones”. In: IEEE Transactions
on Information Forensics and Security 11.10 (2016),
pp. 2268–2283. DOI: 10.1109/TIFS.2016.2578288.

[15] R. Ramachandra et al. “Custom silicone Face Masks:
Vulnerability of Commercial Face Recognition Systems
Presentation Attack Detection”. In: 2019 7th Interna-
tional Workshop on Biometrics and Forensics (IWBF).
2019, pp. 1–6. DOI: 10.1109/IWBF.2019.8739236.

[16] Raghavendra Ramachandra and Christoph Busch. “Pre-
sentation Attack Detection Methods for Face Recognition
Systems: A Comprehensive Survey”. In: 50.1 (2017).
ISSN: 0360-0300. DOI: 10 . 1145 / 3038924. URL: https :
//doi.org/10.1145/3038924.

[17] Raghavendra Ramachandra et al. “Custom silicone Face
Masks: Vulnerability of Commercial Face Recognition
Systems amp; Presentation Attack Detection”. In: (2019),
pp. 1–6. DOI: 10.1109/IWBF.2019.8739236.

[18] N. K. Ratha, J. H. Connell, and R. M. Bolle. “Enhancing
security and privacy in biometrics-based authentication
systems”. In: IBM Systems Journal 40.3 (2001), pp. 614–
634. DOI: 10.1147/sj.403.0614.

[19] ISO/IEC JTC1 SC37. “ISO/IEC 30107-1:2016 Informa-
tion technology - Biometric presentation attack detection
- Part 1: Framework”. In: (2016). URL: https://www.iso.
org/standard/53227.html.

[20] A. K. Singh, P. Joshi, and G. C. Nandi. “Face recognition
with liveness detection using eye and mouth movement”.
In: 2014 International Conference on Signal Propaga-
tion and Computer Technology (ICSPCT 2014). 2014,
pp. 592–597. DOI: 10.1109/ICSPCT.2014.6884911.

[21] Shengtao Sun et al. “Anti-spoofing Face Recognition
Using Infrared Structure Light”. In: Frontiers in Optics /
Laser Science. Optica Publishing Group, 2020, FW1F.3.
DOI: 10.1364/FIO.2020.FW1F.3. URL: http://opg.optica.
org/abstract.cfm?URI=FiO-2020-FW1F.3.

[22] Munalih Ahmad Syarif et al. “Challenge response inter-
action for biometric liveness establishment and template
protection”. In: 2016 14th Annual Conference on Privacy,
Security and Trust (PST). 2016, pp. 698–701. DOI: 10.
1109/PST.2016.7907025.

Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2023)

112

https://www.ssi.gouv.fr/uploads/2021/03/anssi-referentiel%5C_exigences-pvid-v1.1.pdf
https://www.ssi.gouv.fr/uploads/2021/03/anssi-referentiel%5C_exigences-pvid-v1.1.pdf
https://doi.org/https://doi.org/10.1016/j.neucom.2019.07.047
https://doi.org/https://doi.org/10.1016/j.neucom.2019.07.047
https://www.sciencedirect.com/science/article/pii/S0925231219310215
https://www.sciencedirect.com/science/article/pii/S0925231219310215
www.scopus.com
www.scopus.com
https://doi.org/10.1109/ICACCS51430.2021.9442012
https://doi.org/10.1109/ICACCS51430.2021.9442012
https://doi.org/10.1109/CCST.2019.8888436
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107032
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107032
https://www.sciencedirect.com/science/article/pii/S0031320319303358
https://www.sciencedirect.com/science/article/pii/S0031320319303358
https://doi.org/10.1109/CGIV.2009.44
https://doi.org/10.3390/app9204328
https://doi.org/10.1109/BTAS.2017.8272752
https://doi.org/10.1109/BTAS.2017.8272752
https://doi.org/10.1109/TIFS.2016.2578288
https://doi.org/10.1109/IWBF.2019.8739236
https://doi.org/10.1145/3038924
https://doi.org/10.1145/3038924
https://doi.org/10.1145/3038924
https://doi.org/10.1109/IWBF.2019.8739236
https://doi.org/10.1147/sj.403.0614
https://www.iso.org/standard/53227.html
https://www.iso.org/standard/53227.html
https://doi.org/10.1109/ICSPCT.2014.6884911
https://doi.org/10.1364/FIO.2020.FW1F.3
http://opg.optica.org/abstract.cfm?URI=FiO-2020-FW1F.3
http://opg.optica.org/abstract.cfm?URI=FiO-2020-FW1F.3
https://doi.org/10.1109/PST.2016.7907025
https://doi.org/10.1109/PST.2016.7907025

	ZA474HC

