
A Customer Service Chatbot Using Python, Machine
Learning, and Artificial Intelligence

Ty EBSEN

University of Arkansas Little Rock
Little Rock, AR 72204 USA

Richard S. SEGALL

Arkansas State University
State University, AR 72467 USA

Hyacinthe ABOUDJA

 Oklahoma City University
Oklahoma City, OK 73106 USA

Daniel BERLEANT

University of Arkansas Little Rock
Little Rock, AR72204 USA

ABSTRACT

This report shows that with the most recent advancements
in Artificial Intelligence (AI) and Natural Language
Processing (NLP) using generative-pretrained
transformers, we can develop robust AI applications to
assist customer service departments with question answer
systems. This paper addresses the question answering task
using an OpenAI Application Programming Interface
(API). This report examines how to create an AI question
answering application from documents that generated
correct answers to questions about those documents. We
used two different approaches to create the question
answering system. One was to use just the OpenAI API.
The other was to use the LangChain framework and
libraries. Both applications did answer questions correctly.
LangChain used less code with a higher learning curve.
The OpenAI API used more code and provided more
detailed answers.

Keywords: Artificial Intelligence, Chatbot, Machine
Learning, Natural Language Processing, Python

Southwest Power Pool (SPP) is a regional transmission
organization with 112 members and a footprint of
552,000-square-miles in 17 states It operates more than
70,000 miles of high-voltage transmission lines in the
Eastern Interconnection. SPP also operates a Day-Ahead
energy market with 324 market participants. SPP hosts
several APIs which require two-factor authentication to
access. SPP’s customer service department receives
numerous requests (many asking the same questions) from
members requesting assistance with the APIs. Many of the
questions are in the documentation that SPP supplies
members when they participate in SPPs energy market.

The documentation is also available for public download
on SPPs website.

This purpose of this project is to build a customer service
question answering system that members can use to ask
questions regarding SPPs APIs. The ultimate goal is to
allow customer service representatives to increase their
efficiency by avoiding the need to answer the same
questions repeatedly.

This project was done using an OpenAI API. We
implemented the task in two different ways to support a
comparison. We used the OpenAI API directly and also
used the LangChain framework. The LangChain
framework used very little code to accomplish this task.
However, a lot of the process was hidden in the
background. The OpenAI approach used more code, but
the answers were noticeably more detailed.

Quality Assurance (QA) is any systematic process of
determining whether a product or service meets specified
requirements. This report next looks at some of the related
work in the QA task area, then discusses the data collection
process, followed by the approaches taken to implement
the QA system and a comparison between the two
approaches.

2. RELATED WORK

A step-by-step tutorial on how to build your own AI
Chatbot with the ChatGPT API was published by Sha
(2023a). That article lists a few things to keep in mind
when creating a chatbot. These include that (i) a chatbot
can be built on any platform; and therefore (ii) a powerful
computer is not needed to create a chatbot. Sha (2023a)
used Python, OpenAI, and Gradio to build a chatbot.
Gradio is notable as a convenient way to demo machine
learning projects with a web interface. Chatbots, in

1. BACKGROUND

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

148 https://doi.org/10.54808/IMCIC2024.01.148ISBN: 978-1-950492-78-7
ISSN: 2771-5914

particular, can help convert a larger body of information
into short, focused, customized extracts (Berleant and
Berghel, 1994).

Sha (2023a) provided the following steps to set up the
development environment for chatbot development. Steps
1-3 provide instructions for downloading and installing
Python on your local computer, adding Python.exe to the
PATH environment variable and checking that the
installation was successful. The remaining steps are
summarized individually next.

Step 4 is to upgrade PIP (Package Installer for Python).
PIP is installed as part of the normal installation. PIP is the
Python package manager that allows the user to install
Python libraries. It is a good idea to upgrade PIP once the
installation is complete.

Step 5 is to install the OpenAI and Gradio libraries using
PIP. OpenAI provides the libraries that are used to access
OpenAI’s API. The Gradio libraries are used to create a
web interface.

Step 6 is to download and install a code editor. The guide
uses Notepad++, a simple and general purpose editor.

Step 7 is to obtain an OpenAI API (Application
Programming Interface) Key. To use the OpenAI API the
developer must have an API key that is provided by
OpenAI. There is more than one way to get the API. One
can check the OpenAI web site for free offerings or,
alternatively, purchase credits. Sha walks developers
through the process of getting an API key from OpenAI.

Step 8 is where Sha (2023a) provides code showing how
to get a chatbot up and running, using “gpt-3.5-turbo” for
the model. The developer can save this code and run it with
Python. The instructions provided give the location of the
URL for the required page.

Building the chatbot. Sha (2023b) follows up with further
instructions. These give a step-by-step guide to building an
AI chatbot using ChatGPT and constitute a good example
to how to consume documents that are used to create an AI
chatbot with a custom knowledge base.

Step 1: As in Sha (2023a), the author states that a chatbot
developer can build a chatbot on any platform and that the
guide is meant for such users.

Step 2: The author points out that since an AI is being
trained as part of the process, it is recommended to take
advantage of a good GPU due to the computational
demands of the training.

Step 3: The guide recommends that the data set be in the
English language for the example used. However, OpenAI

works well with other popular languages such as French,
Spanish, German, etc.

Step 4: As in the earlier guide, the author walks through
the process of downloading and setting up the
development environment with Python, PIP, and Gradio.
Some new libraries are used in this guide. These include
GPT Index, PyPDF2, PyCryptodone, and LangChain.

GPTIndex (also known as LlamaIndex) allows connecting
external data to the LLM (Large Language Model). The
example in this article uses an older version of GPTIndex.

PyPDF2 and PyCryptodome are Python libraries that will
allow using PDF documents as input to the project.

The Gradio library allows interaction with a Chatbot using
a web interface.

Step 5: Downloading and installation of the desired code
editor.

Step 6: Walk-through of the process of obtaining an API
key from OpenAI.

Step 7: Training and creating the chatbot. This is where
the chatbot developer begins using their own documents
for the knowledge base. The “gpt-3.5-turbo” model was
used because it is cheaper and faster than many other
models.

The instructions are to create a local folder called docs
which will store all the pdf files that will be used. Note that
text files and CSV files can also be stored. There is also a
way to add SQL database files and that process is
explained in another article
(https://twitter.com/LangChainAI/status/1635304794335
363072).

The larger the corpus of documents, the longer it takes to
process them. The amount of time also depends on the
CPU (Central Processing Unit) and GPU (Graphics
Processing Unit) resources devoted to the task.

The Python code for this project is this:

from gpt_index import
 SimpleDirectoryReader,
 GPTListIndex,
 GPTSimpleVectorIndex,
 LLMPredictor, PromptHelper
from langchain.chat_models import
 ChatOpenAI
import gradio as gr

3. PROJECT BASICS

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

149

import sys
import os

os.environ["OPENAI_API_KEY"]
 = 'Your API Key'

def construct_index
 (directory_path):
 max_input_size = 4096
 num_outputs = 512
 max_chunk_overlap = 20
 chunk_size_limit = 600

 prompt_helper =
 PromptHelper(max_input_size,
 num_outputs,
 max_chunk_overlap,
 chunk_size_limit
 =chunk_size_limit)

 llm_predictor =
 LLMPredictor
 (llm=ChatOpenAI
 (temperature=0.7,
 model_name="gpt-3.5-turbo",
 max_tokens=num_outputs))

 documents =
 SimpleDirectoryReader
 (directory_path).load_data()

 index = GPTSimpleVectorIndex
 (documents,
 llm_predictor=llm_predictor,
 prompt_helper=prompt_helper)

 index.save_to_disk('index.json')
 return index

def chatbot(input_text):
index =
GPTSimpleVectorIndex.load_from_disk
 ('index.json')
response = index.query
 (input_text,
 response_mode="compact")
return response.response

iface = gr.Interface
 (fn=chatbot,
 inputs=gr.components.Textbox
 (lines=7,
 label="Enter your text"),
 outputs="text",
 title
 ="Custom-trained AI Chatbot")

index = construct_index("docs")
iface.launch(share=True)

This code first produces a file called index.json using the
user defined construct_index function with all of the files
in the docs folder/directory.

PromptHelper is a GPT_index class that deals with Large
Language Model (LLM) context window token
limitations. PromptHelper calculates the available context
size using the context window size of a LLM, reserve
token space for the prompt template, and the output.

A Large Language Model (LLM) is a type of Artificial
Intelligence (AI) algorithm that uses deep learning
techniques and potentially massively large data sets to
understand, summarize, generate and predict new content
(Kerner, 2023).

The Chatbot function is used to take the question or the
input text and search the json.index for the answer. The
function returns the response. The iFace object is used to
create the Gradio web interface that will accept a prompt
and return an answer.

Obtaining an answer to a question. Shapiro (2022) notes
that “There is a need for answering questions from
arbitrary volumes of data.” This is a general problem
statement for which the solution does not need to leverage
knowledge about the type of document (Ding et al. 2006)
or understanding a specific domain (Ding et al. 2005).
Shapiro refers to this as multi-document answering and
uses the U.S. Supreme Court opinion on Dobbs vs. Jackson
which is about 450,000 characters long as the data source.
OpenAI did have an answering API but it has been
deprecated due to a lack of use. Shapiro’s Multi Document
Answering code is at
https://github.com/daveshap/MultiDocumentAnswering.

The build_index.py script creates an index.json file from
an input.txt file. The input.txt file contains the Dobbs vs
Jackson opinion. The build_index.py script splits the data
into 4000-word chunks. For each chunk an embedding is
created using the OpenAI 'text-similarity-ada-001' engine.
One way to think of this is as a vector with the text
followed by the language representation. All chunks are
combined with its embedding and written out to the
index.json file.

The answer_questions.py script is where the answers to
our questions are generated. The script first does a vector
search for the given question and searches for the answer
in the index.json file. A similarity score is calculated
which is the dot product of the question vector and the
vectors that are searched in the index.json file. The results
are sorted by similarity score in descending order and the
top 20 are returned.

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

150

The top 20 results from the index search are then sent to
the OpenAI completion API with the same question. The
results are then summarized into a final answer.

Attention. Vaswani (2017) notes that “The self-attention
mechanism is key to the transformer. The attention
mechanism allows the model to weigh the importance of
different elements (or tokens) in the input sequence when
generating representations. This enables the model to
focus on relevant parts of the sequence, capturing long-
range dependencies and improving performance on tasks
that require understanding of context.” (Vaswani, 2017)

Using HuggingFace. HuggingFace (2023) discussed
question answering and provides open-source machine
learning libraries. The question answering course is a step-
by-step guide to using the libraries to fine-tune a model.
The guide uses the Stanford Question Answering Dataset
(SQuAD) dataset released by Stanford University. The
SQuAD dataset is based on questions about Wikipedia
articles. This is an extractive question-answer guide where
the answer to the question is extracted from a given
context.

The dataset is loaded using the HuggingFace dataset
library. A function is created to tokenize the questions and
context, generate the sequence_ids, and locate the start and
end of the context. The function is then applied to the train
split of the dataset. The model, train_dataset, and
validation dataset are used as inputs to the Trainer class in
the Hugging Face transformers library. The fine-tuned
model was then pushed to Hugging Face and then used in
a pipeline to answer the questions. This process produced
answers that were nearly all reasonable.

PDF (Portable Document Format) files that contain
information related to making API calls using two-factor
authentication to Southwest Power Pools APIs were
downloaded from spp.org. These documents are available
publicly on spp.org. The data could potentially be
collected from the SPP customer service system, but that
data is not publicly available and permission would have
to be obtained to use it outside of SPP.

This project was developed using OpenAI APIs. OpenAI
is an Artificial Intelligence company that is part non-profit
and part for profit that was founded in 2015. In 2020
OpenAI introduced GPT-3 (Generative Pre-trained
Transformer) a large language model that was trained on
large datasets from the internet that is aimed at question
answering.

We researched different ways of developing this QA
application, experimenting with using both the OpenAI
APIs and the LangChain libraries. We developed both
applications using Python. We developed the LangChain
application using Google Colaboratory notebook. We
developed the OpenAI API application locally. It was
necessary to obtain an OpenAI API key to use in both
applications.

The document “two-factor authentication technical
specifications v1.3 20170908.pdf” was used for this
project. It is possible to use multiple documents by
copying them into the “docs” folder of the project.

LangChain is a framework that is used to build AI
applications. Although the code is much more condensed
than the OpenAI version, the LangChain learning curve
was much steeper. The results using LangChain were just
as good as the OpenAI approach. This application was
developed in a Google Colaboratory notebook. There are
several Python libraries that must be install first:
langchain, openai, pydf, tiktoken, and chromadb. One of
the features of LangChain that helped greatly is that it is
not necessary to do any conversion of the pdf files. The
chatbot developer can simply set the location of the pdf
files in the script and it reads each file in the directory,
splits the files, and generates the embeddings.

Here is listing of code with comments noted using #:

#import the OS library used for
#reading the API key from a local
#file and setting the required
#environment variable
#OPENAI_API_KEY.
import os

#Chroma is a vector data store that
#allows us to store our embeddings.
from langchain.vectorstores
 import Chroma

#OpenAIEmbeddings is used to create
#the embedding for the documents as
#well as the question.
from langchain.embeddings.openai
 import OpenAIEmbeddings

#TextSplitter allows us to split
#our input data into chunks. We
#have to do this because the OpenAI
#models have limits to the number
#of tokens that can be passed to
#the API. For exampe the ada-001
#model the max number of tokens is
#2,049.

4. DATA COLLECTION

5. METHODOLOGY

5.1 LangChain

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

151

from langchain.text_splitter
 import
 RecursiveCharacterTextSplitter

#This is the LLM that is used from
#OpenAI.
from langchain.llms import OpenAI

#This library is used for
#retrieving the answer
from langchain.chains
 import RetrievalQA

#These two libraries are used to
#read a directory and load all PDF
#files.
from langchain.document_loaders
 import PyPDFLoader
from langchain.document_loaders
 import DirectoryLoader

#open file function used to open
#the file that contains the
#OpenAI API KEY
def open_file(filepath):
 with open(filepath, 'r',
 encoding='utf-8')
 as infile:
 return infile.read()

#Sets the environment variable
#OPENAI_API_KEY
os.environ['OPENAI_API_KEY']
 = open_file('openaiapikey.txt')

#This code loads all pdf files that
#are in the docs directory
loader =
 DirectoryLoader
 ('./docs/',
 glob="./*.pdf",
 loader_cls=PyPDFLoader)
documents = loader.load()

#splitting the text into 1000 byte
#chunks.
text_splitter =
 RecursiveCharacterTextSplitter
 (chunk_size=1000,
 chunk_overlap=200)
texts =
 text_splitter.split_documents
 (documents)

#creates the embeddings and creates
#a Chroma docsearch object that
#will be used to retrieve the
#answer to the question.
embeddings = OpenAIEmbeddings()
docsearch =

 Chroma.from_documents
 (texts, embeddings)
qa = RetrievalQA.from_chain_type
 (llm=OpenAI(),
 chain_type="stuff",
 retriever
 =docsearch.as_retriever())

query = "What is required for SPP\
 two-factor authentication?”
qa.run(query)

The OpenAI code it more involved than the LangChain
approach but it is easier to follow and understand what is
happening.

pdf_2_txt.py: This Python script uses the PyPDF2 and OS
libraries to read all the pdf files in a directory, convert them
to text, and save them to a file call input_docs.txt. The
input_docs.txt will be the input to the create_index.py
script.

import PyPDF2
import os
pdf_path =
 '/Users/tyebsen/projects/docs/'
for filename in os.listdir(pdf_path):
 if filename.endswith('.pdf'):
 reader = PyPDF2.PdfReader
 (os.path.join(pdf_path,
 filename))
 for i in range(len(reader.pages)):
 page = reader.pages[i]
 page = page.extract_text()
 page = " ".join(page.split())
 print(page)
 file1 =
 open(r"input_docs.txt","a")
 file1.writelines(page)
 file1.close()

Create_index.py: This Python script reads the
input_docs.txt file, and breaks the data into 3,000-byte
chunks. For each chunk, it generates the embedding,
saving the text and its embedding in a json formatted file
called index.json. This file is used by the qa.py Python
script to answer questions about the pdf files. We use
3,000-byte chunks because it is safely under the model
prompt limit of 4,000 bytes.

Import openai
import json
import textwrap

def open_file(filepath):
 with open(filepath, 'r',
 encoding='utf-8')
 as infile: return infile.read()

5.2 OpenAI

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

152

openai.api_key =
 open_file('openaiapikey.txt')

def gpt3_embedding
 (content,
 Engine
 ='text-embedding-ada-002'):
 response =
 openai.Embedding.create
 (input=content,engine=engine)
 vector = # this is a normal list
 response['data'][0]['embedding']
 return vector

if __name__ == '__main__':
 alltext =
 open_file('input_docs.txt')
 chunks =
 textwrap.wrap(alltext, 3000)
 result = list()
 for chunk in chunks:
 embedding=gpt3_embedding
 (chunk.encode
 (encoding=
 'ASCII',
 errors='ignore'
).decode()
)
 info =
 {'content': chunk,
 'vector': embedding}
 print(info, '\n\n\n')
 result.append(info)
 with open('index.json', 'w')
 as outfile:
 json.dump(result, outfile,
 indent=2)

qa.py: This Python script is heavily based on Shapiro’s
multi-document project that scans all the documents with
the same question and returns the top 20 results. Shapiro
used a dot product to determine the score. We updated the
script to use cosine similarity for the score. Cosine
similarity is what OpenAI recommends. The final answer
is generated from a detailed summary of the 20 results.

import openai
import json
import numpy as np
import textwrap
import re
from time import time,sleep
from numpy.linalg import norm

def open_file(filepath):
 with open(filepath, 'r',
 encoding='utf-8')
 as infile: return infile.read()

openai.api_key =
 open_file('openaiapikey.txt')

def gpt3_embedding
 (content,
 engine=
 'text-embedding-ada-002'):
 content = content.encode
 (encoding='ASCII',
 errors='ignore'
).decode()
 response =
 openai.Embedding.create
 (input=content,engine=engine)
 vector = #this is a normal list
 response['data'][0]['embedding']
 return vector

def similarity(v1, v2):
return cosine similarity
 return
 np.dot(v1,v2)/norm(v1)*norm(v2)

def search_index(text, data,
 count=20):
 vector = gpt3_embedding(text)
 scores = list()
 for i in data:
 score = similarity(vector,
 i['vector'])
 scores.append
 ({'content': i['content'],
 'score': score})
 ordered = sorted
 (scores,
 key=lambda d: d['score'],
 reverse=True)
 return ordered[0:count]

def gpt3_completion
 (prompt,
 engine='text-davinci-002',
 temp=0.6, top_p=1.0,
 tokens=2000, freq_pen=0.25,
 pres_pen=0.0, stop=['<<END>>']):
 max_retry = 5
 retry = 0
 prompt =
 prompt.encode
 (encoding='ASCII',
 errors='ignore'
).decode()
 while True:
 try:
 response =
 openai.Completion.create
 (engine=engine,
 prompt=prompt,
 temperature=temp,

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

153

 max_tokens=tokens,
 top_p=top_p,
 frequency_penalty=
 freq_pen,
 presence_penalty=
 pres_pen,
 stop=stop
)
 text = response
 ['choices'][0]['text']
 .strip()
 text =
 re.sub('\s+', ' ', text)
 filename =
 '%s_gpt3.txt' % time()
 with open(
 'gpt3_logs/%s'
 % filename,
 'w')
 as outfile:
outfile.write('PROMPT:\n\n'
 + prompt +
 '\n\n==========\n\nRESPONSE:\n\n'
 + text)
 return text
 except Exception as oops:
 retry += 1
 if retry >= max_retry:
 return "GPT3 error: %s"
 % oops
 print
 ('Error communicating \
with OpenAI:',
 oops)
 sleep(1)

if __name__ == '__main__':
 with open('index.json', 'r')
 as infile:
 data = json.load(infile)
 while True:
 query = input("Enter your \
question here: ")
 results =
 search_index(query, data)
 answers = list()
 #answer the same question
 #for all returned chunks
 for result in results:
 prompt=f"Use the following \
passage to give a detailed answer \
to the question:\n\QUESTION: \
{query}\n\nPASSAGE: \
{result['content']}\n\nDETAILED \
ANSWER:"
 answer =
 gpt3_completion(prompt)
 answers.append(answer)
 #summarize the
 #answers together

 all_answers =
 '\n\n'.join(answers)
 chunks = textwrap.wrap
 (all_answers, 10000)
 final = list()
 for chunk in chunks:
 prompt =
f"Write a detailed summary of the \
following: {chunk}"
 summary =
 gpt3_completion(prompt)
 final.append(summary)
 print('\n\n=========\n\n',
 '\n\n'.join(final))

Both approaches generated reasonable answers. However,
the OpenAI approach generated much more detailed
answers. The OpenAI approach required much more code,
but we believe it provides a better understanding of what
is actually happening with OpenAI. In comparison, the
LangChain framework hides a lot of what is going on
behind the scenes.

We also scored each predicted answer with the actual
answer from the documents using the cosine similarity
calculation. The LangChain answers scored better against
the actual answers than the OpenAI method. Table 1 shows
the LangChain results.

This project shows that, using the latest advances in
Artificial Intelligence (AI) and Natural Language
Processing (NLP), a chatbot developer can produce a
robust QA (Quality Assurance) system that can be used to
assist customers. OpenAI was selected for use because is
currently leading in the AI Natural Language Processing
(NLP) field with generative-pretrained transformer
models. OpenAI does charge a small fee for the use of their
Application Programming Interfaces (APIs), but it was
negligible for this project.

We also chose the LangChain framework because of its
ability to consume multiple documents. Although a lot of
the processing is done behind the scenes, it is a powerful
set of libraries that can be used to build AI applications
albeit with a bigger learning curve than the OpenAI API.

The OpenAI version needs some performance
enhancements for a production system, as it otherwise can
take too long to produce an answer. One thing to look at is
lowering the number of results returned from the
search_index function from 20. This could however
possibly reduce the accuracy of the results. Further testing
would need to be done. Further research could also be done

6. RESULTS

7. CONCLUSIONS

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

154

using vector stores like Chroma rather than a JSON
(JavaScript Object Notation) formatted file. The
LangChain version performs much better.

For a production system, we would probably recommend
the LangChain version. The code would be easier to
maintain, the performance better, and using multiple pdf
files (or any other type of files) is easier since it is only
necessary to drop them into a folder without having to do
format conversion or other manipulation.

We conclude that Southwest Power Pool (SPP) and other
organizations could benefit from an AI question answering
chatbot system to assist users with their API questions.
Additional performance, load, and accuracy testing would
need to be done prior to production. User testing would
also need to be done. Security would also be a
consideration in a project like this, as hackers should not
be able to use such a service to gain access to internal
organization systems.

It is important to note that SPP is a non-profit organization.
A project that costs less than a certain limit would not
normally be subject to a cost-based analysis. Also, these
types of projects would best be discussed in multiple
working groups made up of SPP members and staff to
determine the viability of the project, as could be
recommended for other organizations as well.

To calculate the “people cost,” the rate of $41.00 was used
as it is published in the Department of Labor “Employer
Costs for Employee Compensation – March 2023” report.
The Open AI cost was priced at 12,000 transactions at
approximately $0.00700 per transaction (https://gptforwo
rk.com/tools/openai-chatgpt-api-pricing-calculator).

Additional research could be done in providing metrics for
a production QA (Quality Assurance) system. These
metrics would be used to determine how the QA system is
performing based on metrics such as conversation length,
number of conversations, number of unique users, human
takeover rate, and others. Michelle Cyca describes these
metrics in the article “Chatbot Analytics 101: Essential
Metrics to Track” (Cyca, 2022).

More research could also be done with different OpenAI
models. This project used the text-embedding-ada-002
engine for the embeddings and text-divinci-002 for the
completions.

Publication of this work was supported in part by the
National Science Foundation under Award No. OIA-

1946391. The content reflects the views of the authors and
not necessarily the NSF.

Berleant, D. and Berghel, H. (1994). Customizing
Information: Part 1, Getting what We Need, when We
Need It. Computer, vol. 27, no. 9, pp. 96–98,
https://ieeexplore.ieee.org/document/312053.

Cheng, R. (2021). Question Answering with Pretrained
Transformers Using PyTorch. Toward Data Science.
[Online] January 19, 2021.
https://towardsdatascience.com/.

Cyca, M. (2022). Chatbot Analytics 101: Essential
Metrics to Track. https://blog.hootsuite.com/chatbot-
analytics/. [Online] September 21, 2022.

Ding, J., Hughes, L.M., Berleant, D., Fulmer, A.W.,
Wurtele, E.S. (2006). PubMed Assistant: A Biologist-
Friendly Interface for Enhanced PubMed Search,
Bioinformatics, vol. 22, issue 3, pp. 378–380,
https://doi.org/10.1093/bioinformatics/bti821.

Ding, J., Viswanathan, K., Berleant, D., Hughes, L.,
Wurtele, E.S., Ashlock, D., Dickerson, J.A., Fulmer,
A., Schnable, P.S. (2005). Using the Biological
Taxonomy to Access Biological Literature with
PathBinderH, Bioinformatics, vol. 21, issue 10, pp.
2560–2562,
https://doi.org/10.1093/bioinformatics/bti381.

HuggingFace (2023). Question Answering. Hugging
Face. [Online] 2023. https://huggingface.com.

Kerner, S.M. (2023). Large Language Model. Retrieved
August 6, 2023 from
https://www.techtarget.com/whatis/definition/large-
language-model-LLM.

Khanna, C. (2021). Question Answering with a fine-
tuned BERT. Towards Data Science. [Online] May
15, 2021. https://towardsdatascience.com/.

Sha, A. (2023a). How to Build Your Own AI Chatbot
With ChatGPT API: A Step-by-Step Tutorial.
beebom.com. [Online] June 19, 2023.
https://beebom.com/how-build-own-ai-chatbot-with-
chatgpt-api/.

Sha, A. (2023b). How to Train an AI Chatbot With
Custom Knowledge Base Using ChatGPT API.
beebom.com. [Online] June 14, 2023.
https://beebom.com/how-train-ai-chatbot-custom-
knowledge-base-chatgpt-api/.

Shapiro, D. (2022). Answer complex questions from an
arbitrarily large set of documents with vector search
and GPT-3. youtune.com. [Online] June 25, 2022.
https://www.youtube.com/watch?v=es8e4SEuvV0.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L.. Gomez, A.N., Kaiser, L., Polosukhin, I.
(2017). Attention Is All You Need. In: NIPS'17:
Proceedings of 31st International Conference on
Neural Information Processing Systems. Dec.2021.
https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

8. FUTURE DIRECTIONS

9. ACKNOWLEDGMENT

10. REFERENCES

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

155

Table 1: LangChain Results

QuesƟon Answer LangChain Answer COSINE Similarity Score
1) What is required
for SPP two-factor
authenƟcaƟon?

In order to authenticate,
users or applications
accessing the User
Interfaces (UIs) and APIs
must present a valid x509
certificate and present a
second authentication factor.

A valid x509 client
CerƟficate Authority (CA)
that is trusted by SPP and a
login ID (IdenƟficaƟon) and
password.

0.849

2) What is the
integrated
marketplace two-
factor
authenƟcaƟon?

In order to authenticate,
users or applications
accessing the UIs and APIs
must present a valid x509
certificate and present a
second authentication factor.

The integrated marketplace
two-factor authenƟcaƟon
requires users to present a
valid x509 cerƟficate and a
second authenƟcaƟon
factor, such as a login ID
and password.

0.933

3) What is the format
of the request
header?

The concatenated token,
made up of the Request
Created Timestamp,
Request Nonce, and
Hash-based message
authentication code(HMAC)
Sha512 Hash, concatenated
together and separated by
hyphens.

The request header consists
of the Request Created
Timestamp, Request Nonce,
and HMAC Sha512 Hash,
concatenated together and
separated by hyphens.

0.954

4) What is the format
of the token?

requestCreated + “-“ +
requestNonce + “-“

The token is a Nonce and
HMAC Sha512 Hash,
concatenated together and
separated by hyphens.

0.823

5) What is the format
of the Ɵmestamp?

yyyy-Mdd’T’HH:mm:ss’Z’
where ‘T’ is the literal
character T and ‘Z’ is the
literal character Z.

The format of the
Ɵmestamp is yyyy-MM-
dd'T'HH:mm:ss'Z', with yyyy
being the 4 digit year, MM
being the 2 digit month (01-
12), dd being the 2 digit day
(01-31), HH being the 2
digit hour (00-23), mm
being the 2 digit minute
(00-59), and ss being the 2
digit second (00-50).

0.880

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

156

	ZA198JE

