Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

A Customer Service Chatbot Using Python, Machine
Learning, and Artificial Intelligence

Ty EBSEN
University of Arkansas Little Rock
Little Rock, AR 72204 USA

Richard S. SEGALL
Arkansas State University
State University, AR 72467 USA

Hyacinthe ABOUDJA
Oklahoma City University
Oklahoma City, OK 73106 USA

Daniel BERLEANT
University of Arkansas Little Rock
Little Rock, AR72204 USA

ABSTRACT

This report shows that with the most recent advancements
in Artificial Intelligence (AI) and Natural Language
Processing (NLP) using generative-pretrained
transformers, we can develop robust Al applications to
assist customer service departments with question answer
systems. This paper addresses the question answering task
using an OpenAl Application Programming Interface
(API). This report examines how to create an Al question
answering application from documents that generated
correct answers to questions about those documents. We
used two different approaches to create the question
answering system. One was to use just the OpenAl API.
The other was to use the LangChain framework and
libraries. Both applications did answer questions correctly.
LangChain used less code with a higher learning curve.
The OpenAl API used more code and provided more
detailed answers.

Keywords: Artificial Intelligence, Chatbot, Machine
Learning, Natural Language Processing, Python

1. BACKGROUND

Southwest Power Pool (SPP) is a regional transmission
organization with 112 members and a footprint of
552,000-square-miles in 17 states It operates more than
70,000 miles of high-voltage transmission lines in the
Eastern Interconnection. SPP also operates a Day-Ahead
energy market with 324 market participants. SPP hosts
several APIs which require two-factor authentication to
access. SPP’s customer service department receives
numerous requests (many asking the same questions) from
members requesting assistance with the APIs. Many of the
questions are in the documentation that SPP supplies
members when they participate in SPPs energy market.

ISBN: 978-1-950492-78-7
ISSN: 2771-5914

148

The documentation is also available for public download
on SPPs website.

This purpose of this project is to build a customer service
question answering system that members can use to ask
questions regarding SPPs APIs. The ultimate goal is to
allow customer service representatives to increase their
efficiency by avoiding the need to answer the same
questions repeatedly.

This project was done using an OpenAl APIL. We
implemented the task in two different ways to support a
comparison. We used the OpenAl API directly and also
used the LangChain framework. The LangChain
framework used very little code to accomplish this task.
However, a lot of the process was hidden in the
background. The OpenAl approach used more code, but
the answers were noticeably more detailed.

Quality Assurance (QA) is any systematic process of
determining whether a product or service meets specified
requirements. This report next looks at some of the related
work in the QA task area, then discusses the data collection
process, followed by the approaches taken to implement
the QA system and a comparison between the two
approaches.

2. RELATED WORK

A step-by-step tutorial on how to build your own Al
Chatbot with the ChatGPT API was published by Sha
(2023a). That article lists a few things to keep in mind
when creating a chatbot. These include that (i) a chatbot
can be built on any platform; and therefore (ii) a powerful
computer is not needed to create a chatbot. Sha (2023a)
used Python, OpenAl, and Gradio to build a chatbot.
Gradio is notable as a convenient way to demo machine
learning projects with a web interface. Chatbots, in

https://doi.org/10.54808/IM C1C2024.01.148

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

particular, can help convert a larger body of information
into short, focused, customized extracts (Berleant and
Berghel, 1994).

Sha (2023a) provided the following steps to set up the
development environment for chatbot development. Steps
1-3 provide instructions for downloading and installing
Python on your local computer, adding Python.exe to the
PATH environment variable and checking that the
installation was successful. The remaining steps are
summarized individually next.

Step 4 is to upgrade PIP (Package Installer for Python).
PIP is installed as part of the normal installation. PIP is the
Python package manager that allows the user to install
Python libraries. It is a good idea to upgrade PIP once the
installation is complete.

Step 5 is to install the OpenAl and Gradio libraries using
PIP. OpenAl provides the libraries that are used to access
OpenAlI’s APIL. The Gradio libraries are used to create a
web interface.

Step 6 is to download and install a code editor. The guide
uses Notepad++, a simple and general purpose editor.

Step 7 is to obtain an OpenAl API (Application
Programming Interface) Key. To use the OpenAl API the
developer must have an API key that is provided by
OpenAl. There is more than one way to get the API. One
can check the OpenAl web site for free offerings or,
alternatively, purchase credits. Sha walks developers
through the process of getting an API key from OpenAl.

Step 8 is where Sha (2023a) provides code showing how
to get a chatbot up and running, using “gpt-3.5-turbo” for
the model. The developer can save this code and run it with
Python. The instructions provided give the location of the
URL for the required page.

Building the chatbot. Sha (2023b) follows up with further
instructions. These give a step-by-step guide to building an
Al chatbot using ChatGPT and constitute a good example
to how to consume documents that are used to create an Al
chatbot with a custom knowledge base.

Step 1: As in Sha (2023a), the author states that a chatbot
developer can build a chatbot on any platform and that the
guide is meant for such users.

Step 2: The author points out that since an Al is being
trained as part of the process, it is recommended to take
advantage of a good GPU due to the computational
demands of the training.

Step 3: The guide recommends that the data set be in the
English language for the example used. However, OpenAl

149

works well with other popular languages such as French,
Spanish, German, etc.

Step 4: As in the earlier guide, the author walks through
the process of downloading and setting up the
development environment with Python, PIP, and Gradio.
Some new libraries are used in this guide. These include
GPT Index, PyPDF2, PyCryptodone, and LangChain.

GPTIndex (also known as Llamalndex) allows connecting
external data to the LLM (Large Language Model). The
example in this article uses an older version of GPTIndex.

PyPDF2 and PyCryptodome are Python libraries that will
allow using PDF documents as input to the project.

The Gradio library allows interaction with a Chatbot using
a web interface.

Step 5: Downloading and installation of the desired code
editor.

Step 6: Walk-through of the process of obtaining an API
key from OpenAl.

Step 7: Training and creating the chatbot. This is where
the chatbot developer begins using their own documents
for the knowledge base. The “gpt-3.5-turbo” model was
used because it is cheaper and faster than many other
models.

The instructions are to create a local folder called docs
which will store all the pdf files that will be used. Note that
text files and CSV files can also be stored. There is also a
way to add SQL database files and that process is
explained in another article
(https://twitter.com/LangChainAl/status/1635304794335
363072).

The larger the corpus of documents, the longer it takes to
process them. The amount of time also depends on the
CPU (Central Processing Unit) and GPU (Graphics
Processing Unit) resources devoted to the task.

3. PROJECT BASICS

The Python code for this project is this:

from gpt index import
SimpleDirectoryReader,
GPTListIndex,
GPTSimpleVectorIndex,
LILMPredictor, PromptHelper

from langchain.chat models import
ChatOpenATI

import gradio as gr

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

import sys
import os

os.environ["OPENAI API KEY"]
= 'Your API Key'

def construct index
(directory path):
max input size = 4096
num_outputs = 512
max_chunk overlap = 20
chunk size limit = 600

prompt helper =
PromptHelper (max_ input size,
num outputs,
max_ chunk overlap,
chunk size limit
=chunk size limit)

1lm predictor =
LLMPredictor
(11lm=ChatOpenAl
(temperature=0.7,
model name="gpt-3.5-turbo",
max_ tokens=num outputs))

documents =
SimpleDirectoryReader
(directory path).load data()

index = GPTSimpleVectorIndex
(documents,
1llm predictor=11lm predictor,
prompt helper=prompt helper)

index.save to disk('index.json')
return index

def chatbot (input_ text):

index =

GPTSimpleVectorIndex.load from disk
('"index.json')

response = index.query
(input_ text,
response_mode="compact")

return response.response

iface = gr.Interface
(fn=chatbot,
inputs=gr.components.Textbox
(lines=7,
label="Enter your text"),
outputs="text",
title
="Custom-trained AI Chatbot")

index = construct index("docs")
iface.launch (share=True)

150

This code first produces a file called index.json using the
user defined construct_index function with all of the files
in the docs folder/directory.

PromptHelper is a GPT _index class that deals with Large
Language Model (LLM) context window token
limitations. PromptHelper calculates the available context
size using the context window size of a LLM, reserve
token space for the prompt template, and the output.

A Large Language Model (LLM) is a type of Artificial
Intelligence (Al) algorithm that uses deep learning
techniques and potentially massively large data sets to
understand, summarize, generate and predict new content
(Kerner, 2023).

The Chatbot function is used to take the question or the
input text and search the json.index for the answer. The
function returns the response. The iFace object is used to
create the Gradio web interface that will accept a prompt
and return an answer.

Obtaining an answer to a question. Shapiro (2022) notes
that “There is a need for answering questions from
arbitrary volumes of data.” This is a general problem
statement for which the solution does not need to leverage
knowledge about the type of document (Ding et al. 2006)
or understanding a specific domain (Ding et al. 2005).
Shapiro refers to this as multi-document answering and
uses the U.S. Supreme Court opinion on Dobbs vs. Jackson
which is about 450,000 characters long as the data source.
OpenAl did have an answering API but it has been
deprecated due to a lack of use. Shapiro’s Multi Document
Answering code is at
https://github.com/daveshap/MultiDocumentAnswering.

The build_index.py script creates an index.json file from
an input.txt file. The input.txt file contains the Dobbs vs
Jackson opinion. The build index.py script splits the data
into 4000-word chunks. For each chunk an embedding is
created using the OpenAl 'text-similarity-ada-001' engine.
One way to think of this is as a vector with the text
followed by the language representation. All chunks are
combined with its embedding and written out to the
index.json file.

The answer questions.py script is where the answers to
our questions are generated. The script first does a vector
search for the given question and searches for the answer
in the index.json file. A similarity score is calculated
which is the dot product of the question vector and the
vectors that are searched in the index.json file. The results
are sorted by similarity score in descending order and the
top 20 are returned.

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

The top 20 results from the index search are then sent to
the OpenAl completion API with the same question. The
results are then summarized into a final answer.

Attention. Vaswani (2017) notes that “The self-attention
mechanism is key to the transformer. The attention
mechanism allows the model to weigh the importance of
different elements (or tokens) in the input sequence when
generating representations. This enables the model to
focus on relevant parts of the sequence, capturing long-
range dependencies and improving performance on tasks
that require understanding of context.” (Vaswani, 2017)

Using HuggingFace. HuggingFace (2023) discussed
question answering and provides open-source machine
learning libraries. The question answering course is a step-
by-step guide to using the libraries to fine-tune a model.
The guide uses the Stanford Question Answering Dataset
(SQuAD) dataset released by Stanford University. The
SQuAD dataset is based on questions about Wikipedia
articles. This is an extractive question-answer guide where
the answer to the question is extracted from a given
context.

The dataset is loaded using the HuggingFace dataset
library. A function is created to tokenize the questions and
context, generate the sequence_ids, and locate the start and
end of the context. The function is then applied to the train
split of the dataset. The model, train dataset, and
validation dataset are used as inputs to the Trainer class in
the Hugging Face transformers library. The fine-tuned
model was then pushed to Hugging Face and then used in
a pipeline to answer the questions. This process produced
answers that were nearly all reasonable.

4. DATA COLLECTION

PDF (Portable Document Format) files that contain
information related to making API calls using two-factor
authentication to Southwest Power Pools APIs were
downloaded from spp.org. These documents are available
publicly on spp.org. The data could potentially be
collected from the SPP customer service system, but that
data is not publicly available and permission would have
to be obtained to use it outside of SPP.

5. METHODOLOGY

This project was developed using OpenAl APIs. OpenAl
is an Artificial Intelligence company that is part non-profit
and part for profit that was founded in 2015. In 2020
OpenAl introduced GPT-3 (Generative Pre-trained
Transformer) a large language model that was trained on
large datasets from the internet that is aimed at question
answering.

151

We researched different ways of developing this QA
application, experimenting with using both the OpenAl
APIs and the LangChain libraries. We developed both
applications using Python. We developed the LangChain
application using Google Colaboratory notebook. We
developed the OpenAl API application locally. It was
necessary to obtain an OpenAl API key to use in both
applications.

The document “two-factor authentication technical
specifications v1.3 20170908.pdf” was used for this
project. It is possible to use multiple documents by
copying them into the “docs” folder of the project.

5.1 LangChain

LangChain is a framework that is used to build Al
applications. Although the code is much more condensed
than the OpenAl version, the LangChain learning curve
was much steeper. The results using LangChain were just
as good as the OpenAl approach. This application was
developed in a Google Colaboratory notebook. There are
several Python libraries that must be install first:
langchain, openai, pydf, tiktoken, and chromadb. One of
the features of LangChain that helped greatly is that it is
not necessary to do any conversion of the pdf files. The
chatbot developer can simply set the location of the pdf
files in the script and it reads each file in the directory,
splits the files, and generates the embeddings.

Here is listing of code with comments noted using #:

#import the OS library used for
#reading the API key from a local
#file and setting the required
fenvironment variable
#OPENAI API KEY.

import os

#Chroma is a vector data store that
#allows us to store our embeddings.
from langchain.vectorstores

import Chroma

#O0penAIEmbeddings is used to create

#the embedding for the documents as

#well as the question.

from langchain.embeddings.openai
import OpenAIEmbeddings

#TextSplitter allows us to split
four input data into chunks. We
#have to do this because the OpenAl
#models have limits to the number
#of tokens that can be passed to
#the API. For exampe the ada-001
#model the max number of tokens is
#2,049.

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

from langchain.text splitter
import
RecursiveCharacterTextSplitter

#This is the LLM that is used from
#OpenAl.
from langchain.llms import OpenAI

#This library is used for

#retrieving the answer

from langchain.chains
import RetrievalQA

#These two libraries are used to

#read a directory and load all PDF

#files.

from langchain.document loaders
import PyPDFLoader

from langchain.document loaders
import DirectoryLoader

#open file function used to open
#the file that contains the
#0OpenAI API KEY
def open file(filepath):

with open(filepath, 'r',

encoding='utf-8")
as infile:
return infile.read()

#Sets the environment variable
#OPENAI API KEY
os.environ['OPENAI API KEY']

= open_ file('openaiapikey.txt')

#This code loads all pdf files that
#fare in the docs directory
loader =
DirectoryLoader
('./docs/",
glob="./*.pdf",
loader cls=PyPDFLoader)
documents = loader.load()

#splitting the text into 1000 byte
#chunks.
text splitter =
RecursiveCharacterTextSplitter
(chunk size=1000,
chunk overlap=200)
texts =
text splitter.split documents
(documents)

#creates the embeddings and creates
#a Chroma docsearch object that
#will be used to retrieve the
#fanswer to the question.

embeddings = OpenAIEmbeddings ()
docsearch =

152

Chroma.from documents
(texts, embeddings)
ga = RetrievalQA.from chain type
(11m=0OpenAI (),
chain_ type="stuff",
retriever
=docsearch.as retriever())

query = "What is required for SPP\
two-factor authentication?”
ga.run (query)

5.2 OpenAl

The OpenAl code it more involved than the LangChain
approach but it is easier to follow and understand what is
happening.

pdf 2 txt.py: This Python script uses the PyPDF2 and OS
libraries to read all the pdf files in a directory, convert them
to text, and save them to a file call input docs.txt. The
input_docs.txt will be the input to the create index.py
script.

import PyPDF2
import os
pdf path =
' /Users/tyebsen/projects/docs/"’
for filename in os.listdir (pdf path):
if filename.endswith('.pdf"'):
reader = PyPDF2.PdfReader
(os.path.join (pdf path,

filename))
for i in range(len(reader.pages)):

page = reader.pages[i]
page = page.extract text()
page = " ".join(page.split())
print (page)
filel =

open (r"input docs.txt","a")

filel.writelines (page)
filel.close()

Create_index.py: This Python script reads the
input_docs.txt file, and breaks the data into 3,000-byte
chunks. For each chunk, it generates the embedding,
saving the text and its embedding in a json formatted file
called index.json. This file is used by the ga.py Python
script to answer questions about the pdf files. We use
3,000-byte chunks because it is safely under the model
prompt limit of 4,000 bytes.

Import openai
import json
import textwrap

def open file(filepath):
with open(filepath, 'r',
encoding='utf-8")
as infile: return infile.read()

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

openai.api key =
open file('openaiapikey.txt')

def gpt3 embedding
(content,
Engine
='text-embedding-ada-002") :
response =
openai.Embedding.create
(input=content, engine=engine)
vector = # this is a normal list
response['data'][0] ['embedding']
return vector

if name == "' main_ ':
alltext =
open file('input docs.txt')
chunks =

textwrap.wrap (alltext, 3000)
result = list ()
for chunk in chunks:
embedding=gpt3 embedding
(chunk.encode

(encoding=
"ASCII',
errors='ignore'
) .decode ()
)
info =
{'content': chunk,

'vector': embedding}
print (info, '\n\n\n')
result.append (info)

with open('index.json', 'w')
as outfile:
json.dump (result, outfile,
indent=2)

ga.py: This Python script is heavily based on Shapiro’s
multi-document project that scans all the documents with
the same question and returns the top 20 results. Shapiro
used a dot product to determine the score. We updated the
script to use cosine similarity for the score. Cosine
similarity is what OpenAl recommends. The final answer
is generated from a detailed summary of the 20 results.

import openai

import Jjson

import numpy as np

import textwrap

import re

from time import time,sleep
from numpy.linalg import norm

def open file(filepath):
with open(filepath, 'r',
encoding='utf-8")
as infile: return infile.read()

153

openai.api key =
open file('openaiapikey.txt')

def gpt3 embedding

(content,

engine=
'text-embedding-ada-002") :

content = content.encode

(encoding='"'ASCII',
errors="ignore'
) .decode ()
response =
openai.Embedding.create
(input=content, engine=engine)
vector = #this is a normal list
response['data'] [0] ['embedding']
return vector

def similarity(vl, v2):
return cosine similarity
return
np.dot (vl,v2) /norm(vl) *norm(v2)

def search index(text, data,
count=20) :
vector = gpt3 embedding (text)
scores = list ()
for i in data:
score = similarity(vector,
i['vector'])
scores.append

({'content': i['content'],
'score': score}l)
ordered = sorted
(scores,

key=lambda d: d['score'],
reverse=True)
return ordered[0:count]

def gpt3 completion
(prompt,
engine='text-davinci-002",
temp=0.6, top p=1.0,
tokens=2000, freqg pen=0.25,
pres pen=0.0, stop=["'<<END>>']):

max retry = 5
retry = 0
prompt =

prompt.encode
(encoding="ASCII',
errors='ignore'
) .decode ()
while True:
try:
response =
openai.Completion.create
(engine=engine,
prompt=prompt,
temperature=temp,

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

max_ tokens=tokens,
top_p=top_p,
frequency penalty=
freq pen,
presence penalty=
pres_pen,
stop=stop
)
text = response
['choices'] [0] ['text']
.strip ()
text =
re.sub('"\s+', ' ', text)
filename =
'$s_gpt3.txt' % time()
with open (
'gpt3 logs/%s’
% filename,
'W')
as outfile:
outfile.write ('PROMPT:\n\n'
+ prompt +
"\n\n==========\n\nRESPONSE:\n\n'

return text
except Exception as oops:
retry += 1
if retry >= max retry:
return "GPT3 error: %s"
% oops
print
('Error communicating \
with OpenAI:',
oops)
sleep (1)

if name == ' main_ ':
with open('index.json', 'r')
as infile:
data = json.load(infile)
while True:
query = input ("Enter your \
question here: ")

results =
search index (query, data)
answers = list ()

#answer the same question
#for all returned chunks
for result in results:
prompt=f"Use the following \
passage to give a detailed answer \
to the question:\n\QUESTION: \
{query}\n\nPASSAGE: \
{result['content']}\n\nDETAILED \
ANSWER:"
answer =
gpt3 completion (prompt)
answers.append (answer)
#summarize the
#answers together

all answers =
'"\n\n'.Jjoin (answers)
chunks = textwrap.wrap
(all _answers, 10000)
final = list ()
for chunk in chunks:
prompt =
f"Write a detailed summary of the \
following: {chunk}"
summary =
gpt3 _completion (prompt)
final.append (summary)
print ('\n\n=========\n\n',
'"\n\n'.join(final))

6. RESULTS

Both approaches generated reasonable answers. However,
the OpenAl approach generated much more detailed
answers. The OpenAl approach required much more code,
but we believe it provides a better understanding of what
is actually happening with OpenAl. In comparison, the
LangChain framework hides a lot of what is going on
behind the scenes.

We also scored each predicted answer with the actual
answer from the documents using the cosine similarity
calculation. The LangChain answers scored better against
the actual answers than the OpenAl method. Table 1 shows
the LangChain results.

7. CONCLUSIONS

This project shows that, using the latest advances in
Artificial Intelligence (AI) and Natural Language
Processing (NLP), a chatbot developer can produce a
robust QA (Quality Assurance) system that can be used to
assist customers. OpenAl was selected for use because is
currently leading in the Al Natural Language Processing
(NLP) field with generative-pretrained transformer
models. OpenAl does charge a small fee for the use of their
Application Programming Interfaces (APIs), but it was
negligible for this project.

We also chose the LangChain framework because of its
ability to consume multiple documents. Although a lot of
the processing is done behind the scenes, it is a powerful
set of libraries that can be used to build Al applications
albeit with a bigger learning curve than the OpenAl API.

The OpenAl version needs some performance
enhancements for a production system, as it otherwise can
take too long to produce an answer. One thing to look at is
lowering the number of results returned from the
search_index function from 20. This could however
possibly reduce the accuracy of the results. Further testing
would need to be done. Further research could also be done

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

using vector stores like Chroma rather than a JSON
(JavaScript Object Notation) formatted file. The
LangChain version performs much better.

For a production system, we would probably recommend
the LangChain version. The code would be easier to
maintain, the performance better, and using multiple pdf
files (or any other type of files) is easier since it is only
necessary to drop them into a folder without having to do
format conversion or other manipulation.

We conclude that Southwest Power Pool (SPP) and other
organizations could benefit from an Al question answering
chatbot system to assist users with their API questions.
Additional performance, load, and accuracy testing would
need to be done prior to production. User testing would
also need to be done. Security would also be a
consideration in a project like this, as hackers should not
be able to use such a service to gain access to internal
organization systems.

It is important to note that SPP is a non-profit organization.
A project that costs less than a certain limit would not
normally be subject to a cost-based analysis. Also, these
types of projects would best be discussed in multiple
working groups made up of SPP members and staff to
determine the viability of the project, as could be
recommended for other organizations as well.

To calculate the “people cost,” the rate of $41.00 was used
as it is published in the Department of Labor “Employer
Costs for Employee Compensation — March 2023 report.
The Open Al cost was priced at 12,000 transactions at
approximately $0.00700 per transaction (https://gptforwo
rk.com/tools/openai-chatgpt-api-pricing-calculator).

8. FUTURE DIRECTIONS

Additional research could be done in providing metrics for
a production QA (Quality Assurance) system. These
metrics would be used to determine how the QA system is
performing based on metrics such as conversation length,
number of conversations, number of unique users, human
takeover rate, and others. Michelle Cyca describes these
metrics in the article “Chatbot Analytics 101: Essential
Metrics to Track” (Cyca, 2022).

More research could also be done with different OpenAl
models. This project used the text-embedding-ada-002
engine for the embeddings and text-divinci-002 for the
completions.

9. ACKNOWLEDGMENT

Publication of this work was supported in part by the
National Science Foundation under Award No. OIA-

155

1946391. The content reflects the views of the authors and
not necessarily the NSF.

10. REFERENCES

Berleant, D. and Berghel, H. (1994). Customizing
Information: Part 1, Getting what We Need, when We
Need It. Computer, vol. 27, no. 9, pp. 96-98,
https://ieeexplore.ieee.org/document/312053.

Cheng, R. (2021). Question Answering with Pretrained
Transformers Using PyTorch. Toward Data Science.
[Online] January 19, 2021.
https://towardsdatascience.com/.

Cyca, M. (2022). Chatbot Analytics 101: Essential
Metrics to Track. https://blog.hootsuite.com/chatbot-
analytics/. [Online] September 21, 2022.

Ding, J., Hughes, L.M., Berleant, D., Fulmer, A.W.,
Waurtele, E.S. (2006). PubMed Assistant: A Biologist-
Friendly Interface for Enhanced PubMed Search,
Bioinformatics, vol. 22, issue 3, pp. 378-380,
https://doi.org/10.1093/bioinformatics/bti821.

Ding, J., Viswanathan, K., Berleant, D., Hughes, L.,
Waurtele, E.S., Ashlock, D., Dickerson, J.A., Fulmer,
A., Schnable, P.S. (2005). Using the Biological
Taxonomy to Access Biological Literature with
PathBinderH, Bioinformatics, vol. 21, issue 10, pp.
2560-2562,
https://doi.org/10.1093/bioinformatics/bti381.

HuggingFace (2023). Question Answering. Hugging
Face. [Online] 2023. https://huggingface.com.

Kerner, S.M. (2023). Large Language Model. Retrieved
August 6, 2023 from
https://www.techtarget.com/whatis/definition/large-
language-model-LLM.

Khanna, C. (2021). Question Answering with a fine-
tuned BERT. Towards Data Science. [Online] May
15, 2021. https://towardsdatascience.com/.

Sha, A. (2023a). How to Build Your Own AI Chatbot
With ChatGPT API: A Step-by-Step Tutorial.
beebom.com. [Online] June 19, 2023.
https://beebom.com/how-build-own-ai-chatbot-with-
chatgpt-api/.

Sha, A. (2023b). How to Train an Al Chatbot With
Custom Knowledge Base Using ChatGPT API.
beebom.com. [Online] June 14, 2023.
https://beebom.com/how-train-ai-chatbot-custom-
knowledge-base-chatgpt-api/.

Shapiro, D. (2022). Answer complex questions from an
arbitrarily large set of documents with vector search
and GPT-3. youtune.com. [Online] June 25, 2022.
https://www.youtube.com/watch?v=es8e¢4SEuvV0.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L.. Gomez, A.N., Kaiser, L., Polosukhin, I.
(2017). Attention Is All You Need. In: NIPS'17:
Proceedings of 31° International Conference on
Neural Information Processing Systems. Dec.2021.
https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Proceedings of the 15th I nternational Multi-Conference on Complexity, I nformatics and Cybernetics (IMCI C 2024)

Table 1: LangChain Results

Question Answer LangChain Answer COSINE Similarity Score
1) What is required In order to authenticate, A valid x509 client 0.849
for SPP two-factor users or applications Certificate Authority (CA)
authentication? accessing the User that is trusted by SPP and a
Interfaces (Uls) and APIs login ID (Identification) and
must present a valid x509 password.
certificate and present a
second authentication factor.
2) What is the In order to authenticate, The integrated marketplace 0.933
integrated users or applications two-factor authentication
marketplace two- accessing the Uls and APIs | requires users to present a
factor must present a valid x509 valid x509 certificate and a
authentication? certificate and present a second authentication
second authentication factor. factor, such as a login ID
and password.
3) What is the format | The concatenated token, The request header consists 0.954
of the request made up of the Request of the Request Created
header? Created Timestamp, Timestamp, Request Nonce,
Request Nonce, and and HMAC Sha512 Hash,
Hash-based message concatenated together and
authentication code(HMAC) separated by hyphens.
Sha512 Hash, concatenated
together and separated by
hyphens.
4) What is the format | requestCreated + “-“ + The token is a Nonce and 0.823
of the token? requestNonce + “-“ HMAC Sha512 Hash,
concatenated together and
separated by hyphens.
5) What is the format | yyyy-Mdd’T’"HH:mm:ss’Z’ | The format of the 0.880

of the timestamp?

where ‘T is the literal
character T and ‘Z’ is the
literal character Z.

timestamp is yyyy-MM-
dd'T'HH:mm:ss'Z', with yyyy
being the 4 digit year, MM
being the 2 digit month (01-
12), dd being the 2 digit day
(01-31), HH being the 2
digit hour (00-23), mm
being the 2 digit minute
(00-59), and ss being the 2
digit second (00-50).

156

	ZA198JE

