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ABSTRACT 

This report shows that with the most recent advancements 
in Artificial Intelligence (AI) and Natural Language 
Processing (NLP) using generative-pretrained 
transformers, we can develop robust AI applications to 
assist customer service departments with question answer 
systems. This paper addresses the question answering task 
using an OpenAI Application Programming Interface 
(API). This report examines how to create an AI question 
answering application from documents that generated 
correct answers to questions about those documents. We 
used two different approaches to create the question 
answering system. One was to use just the OpenAI API. 
The other was to use the LangChain framework and 
libraries. Both applications did answer questions correctly. 
LangChain used less code with a higher learning curve. 
The OpenAI API used more code and provided more 
detailed answers. 

Keywords: Artificial Intelligence, Chatbot, Machine 
Learning, Natural Language Processing, Python 

Southwest Power Pool (SPP) is a regional transmission 
organization with 112 members and a footprint of 
552,000-square-miles in 17 states It operates more than 
70,000 miles of high-voltage transmission lines in the 
Eastern Interconnection.  SPP also operates a Day-Ahead 
energy market with 324 market participants. SPP hosts 
several APIs which require two-factor authentication to 
access. SPP’s customer service department receives 
numerous requests (many asking the same questions) from 
members requesting assistance with the APIs. Many of the 
questions are in the documentation that SPP supplies 
members when they participate in SPPs energy market. 

The documentation is also available for public download 
on SPPs website. 
 
This purpose of this project is to build a customer service 
question answering system that members can use to ask 
questions regarding SPPs APIs. The ultimate goal is to 
allow customer service representatives to increase their 
efficiency by avoiding the need to answer the same 
questions repeatedly. 
 
This project was done using an OpenAI API. We 
implemented the task in two different ways to support a 
comparison. We used the OpenAI API directly and also 
used the LangChain framework. The LangChain 
framework used very little code to accomplish this task. 
However, a lot of the process was hidden in the 
background. The OpenAI approach used more code, but 
the answers were noticeably more detailed. 
 
Quality Assurance (QA) is any systematic process of 
determining whether a product or service meets specified 
requirements. This report next looks at some of the related 
work in the QA task area, then discusses the data collection 
process, followed by the approaches taken to implement 
the QA system and a comparison between the two 
approaches. 

2.  RELATED WORK 

A step-by-step tutorial on how to build your own AI 
Chatbot with the ChatGPT API was published by Sha 
(2023a). That article lists a few things to keep in mind 
when creating a chatbot. These include that (i) a chatbot 
can be built on any platform; and therefore (ii) a powerful 
computer is not needed to create a chatbot. Sha (2023a) 
used Python, OpenAI, and Gradio to build a chatbot. 
Gradio is notable as a convenient way to demo machine 
learning projects with a web interface. Chatbots, in 
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particular, can help convert a larger body of information 
into short, focused, customized extracts (Berleant and 
Berghel, 1994). 

Sha (2023a) provided the following steps to set up the 
development environment for chatbot development. Steps 
1-3 provide instructions for downloading and installing 
Python on your local computer, adding Python.exe to the 
PATH environment variable and checking that the 
installation was successful. The remaining steps are 
summarized individually next. 

Step 4 is to upgrade PIP (Package Installer for Python).  
PIP is installed as part of the normal installation. PIP is the 
Python package manager that allows the user to install 
Python libraries. It is a good idea to upgrade PIP once the 
installation is complete. 

Step 5 is to install the OpenAI and Gradio libraries using 
PIP. OpenAI provides the libraries that are used to access 
OpenAI’s API. The Gradio libraries are used to create a 
web interface. 

Step 6 is to download and install a code editor. The guide 
uses Notepad++, a simple and general purpose editor. 

Step 7 is to obtain an OpenAI API (Application 
Programming Interface) Key. To use the OpenAI API the 
developer must have an API key that is provided by 
OpenAI. There is more than one way to get the API. One 
can check the OpenAI web site for free offerings or, 
alternatively, purchase credits. Sha walks developers 
through the process of getting an API key from OpenAI. 

Step 8 is where Sha (2023a) provides code showing how 
to get a chatbot up and running, using “gpt-3.5-turbo” for 
the model. The developer can save this code and run it with 
Python. The instructions provided give the location of the 
URL for the required page. 

Building the chatbot. Sha (2023b) follows up with further 
instructions. These give a step-by-step guide to building an 
AI chatbot using ChatGPT and constitute a good example 
to how to consume documents that are used to create an AI 
chatbot with a custom knowledge base. 

Step 1: As in Sha (2023a), the author states that a chatbot 
developer can build a chatbot on any platform and that the 
guide is meant for such users. 

Step 2: The author points out that since an AI is being 
trained as part of the process, it is recommended to take 
advantage of a good GPU due to the computational 
demands of the training. 

Step 3: The guide recommends that the data set be in the 
English language for the example used. However, OpenAI 

works well with other popular languages such as French, 
Spanish, German, etc. 

Step 4: As in the earlier guide, the author walks through 
the process of downloading and setting up the 
development environment with Python, PIP, and Gradio.  
Some new libraries are used in this guide. These include 
GPT Index, PyPDF2, PyCryptodone, and LangChain. 

GPTIndex (also known as LlamaIndex) allows connecting 
external data to the LLM (Large Language Model). The 
example in this article uses an older version of GPTIndex. 

PyPDF2 and PyCryptodome are Python libraries that will 
allow using PDF documents as input to the project. 

The Gradio library allows interaction with a Chatbot using 
a web interface. 

Step 5: Downloading and installation of the desired code 
editor. 

Step 6: Walk-through of the process of obtaining an API 
key from OpenAI. 

Step 7: Training and creating the chatbot. This is where 
the chatbot developer begins using their own documents 
for the knowledge base. The “gpt-3.5-turbo” model was 
used because it is cheaper and faster than many other 
models. 

The instructions are to create a local folder called docs 
which will store all the pdf files that will be used. Note that 
text files and CSV files can also be stored. There is also a 
way to add SQL database files and that process is 
explained in another article 
(https://twitter.com/LangChainAI/status/1635304794335
363072). 

The larger the corpus of documents, the longer it takes to 
process them. The amount of time also depends on the 
CPU (Central Processing Unit) and GPU (Graphics 
Processing Unit) resources devoted to the task. 

The Python code for this project is this: 

from gpt_index import  
  SimpleDirectoryReader, 
  GPTListIndex, 
  GPTSimpleVectorIndex,  
  LLMPredictor, PromptHelper 
from langchain.chat_models import 
  ChatOpenAI 
import gradio as gr 

3.  PROJECT BASICS 
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import sys 
import os 
 
os.environ["OPENAI_API_KEY"]  
  = 'Your API Key' 
 
def construct_index 
  (directory_path): 
    max_input_size = 4096 
    num_outputs = 512 
    max_chunk_overlap = 20 
    chunk_size_limit = 600 
 
  prompt_helper =  
    PromptHelper(max_input_size,  
                 num_outputs, 
                 max_chunk_overlap,  
                 chunk_size_limit 
                 =chunk_size_limit) 
 
  llm_predictor =   
    LLMPredictor 
     (llm=ChatOpenAI 
       (temperature=0.7,  
        model_name="gpt-3.5-turbo",  
        max_tokens=num_outputs)) 
 
  documents =   
    SimpleDirectoryReader 
      (directory_path).load_data() 
 
  index = GPTSimpleVectorIndex 
    (documents,    
     llm_predictor=llm_predictor,  
     prompt_helper=prompt_helper) 
       
  index.save_to_disk('index.json') 
  return index 
 
def chatbot(input_text):  
index =   
GPTSimpleVectorIndex.load_from_disk  
  ('index.json') 
response = index.query 
  (input_text,   
   response_mode="compact") 
return response.response 
 
iface = gr.Interface 
  (fn=chatbot, 
   inputs=gr.components.Textbox 
     (lines=7,  
      label="Enter your text"), 
   outputs="text", 
   title 
      ="Custom-trained AI Chatbot") 
 
index = construct_index("docs") 
iface.launch(share=True) 

This code first produces a file called index.json using the 
user defined construct_index function with all of the files 
in the docs folder/directory. 

PromptHelper is a GPT_index class that deals with Large 
Language Model (LLM) context window token 
limitations. PromptHelper calculates the available context 
size using the context window size of a LLM, reserve 
token space for the prompt template, and the output. 

A Large Language Model (LLM) is a type of Artificial 
Intelligence (AI) algorithm that uses deep learning 
techniques and potentially massively large data sets to 
understand, summarize, generate and predict new content 
(Kerner, 2023). 

The Chatbot function is used to take the question or the 
input text and search the json.index for the answer. The 
function returns the response. The iFace object is used to 
create the Gradio web interface that will accept a prompt 
and return an answer. 

Obtaining an answer to a question. Shapiro (2022) notes 
that “There is a need for answering questions from 
arbitrary volumes of data.” This is a general problem 
statement for which the solution does not need to leverage 
knowledge about the type of document (Ding et al. 2006) 
or understanding a specific domain (Ding et al. 2005). 
Shapiro refers to this as multi-document answering and 
uses the U.S. Supreme Court opinion on Dobbs vs. Jackson 
which is about 450,000 characters long as the data source. 
OpenAI did have an answering API but it has been 
deprecated due to a lack of use. Shapiro’s Multi Document 
Answering code is at 
https://github.com/daveshap/MultiDocumentAnswering. 

The build_index.py script creates an index.json file from 
an input.txt file. The input.txt file contains the Dobbs vs 
Jackson opinion. The build_index.py script splits the data 
into 4000-word chunks. For each chunk an embedding is 
created using the OpenAI 'text-similarity-ada-001' engine. 
One way to think of this is as a vector with the text 
followed by the language representation. All chunks are 
combined with its embedding and written out to the 
index.json file. 

The answer_questions.py script is where the answers to 
our questions are generated. The script first does a vector 
search for the given question and searches for the answer 
in the index.json file. A similarity score is calculated 
which is the dot product of the question vector and the 
vectors that are searched in the index.json file. The results 
are sorted by similarity score in descending order and the 
top 20 are returned.  

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

150



The top 20 results from the index search are then sent to 
the OpenAI completion API with the same question.  The 
results are then summarized into a final answer. 

Attention. Vaswani (2017) notes that “The self-attention 
mechanism is key to the transformer. The attention 
mechanism allows the model to weigh the importance of 
different elements (or tokens) in the input sequence when 
generating representations. This enables the model to 
focus on relevant parts of the sequence, capturing long-
range dependencies and improving performance on tasks 
that require understanding of context.” (Vaswani, 2017) 

Using HuggingFace. HuggingFace (2023) discussed 
question answering and provides open-source machine 
learning libraries. The question answering course is a step-
by-step guide to using the libraries to fine-tune a model.  
The guide uses the Stanford Question Answering Dataset 
(SQuAD) dataset released by Stanford University. The 
SQuAD dataset is based on questions about Wikipedia 
articles. This is an extractive question-answer guide where 
the answer to the question is extracted from a given 
context. 

The dataset is loaded using the HuggingFace dataset 
library. A function is created to tokenize the questions and 
context, generate the sequence_ids, and locate the start and 
end of the context. The function is then applied to the train 
split of the dataset. The model, train_dataset, and 
validation dataset are used as inputs to the Trainer class in 
the Hugging Face transformers library. The fine-tuned 
model was then pushed to Hugging Face and then used in 
a pipeline to answer the questions. This process produced 
answers that were nearly all reasonable. 

PDF (Portable Document Format) files that contain 
information related to making API calls using two-factor 
authentication to Southwest Power Pools APIs were 
downloaded from spp.org. These documents are available 
publicly on spp.org. The data could potentially be 
collected from the SPP customer service system, but that 
data is not publicly available and permission would have 
to be obtained to use it outside of SPP.   

This project was developed using OpenAI APIs. OpenAI 
is an Artificial Intelligence company that is part non-profit 
and part for profit that was founded in 2015. In 2020 
OpenAI introduced GPT-3 (Generative Pre-trained 
Transformer) a large language model that was trained on 
large datasets from the internet that is aimed at question 
answering. 

We researched different ways of developing this QA 
application, experimenting with using both the OpenAI 
APIs and the LangChain libraries. We developed both 
applications using Python. We developed the LangChain 
application using Google Colaboratory notebook. We 
developed the OpenAI API application locally. It was 
necessary to obtain an OpenAI API key to use in both 
applications. 

The document “two-factor authentication technical 
specifications v1.3 20170908.pdf” was used for this 
project. It is possible to use multiple documents by 
copying them into the “docs” folder of the project. 

LangChain is a framework that is used to build AI 
applications. Although the code is much more condensed 
than the OpenAI version, the LangChain learning curve 
was much steeper. The results using LangChain were just 
as good as the OpenAI approach. This application was 
developed in a Google Colaboratory notebook. There are 
several Python libraries that must be install first: 
langchain, openai, pydf, tiktoken, and chromadb. One of 
the features of LangChain that helped greatly is that it is 
not necessary to do any conversion of the pdf files. The 
chatbot developer can simply set the location of the pdf 
files in the script and it reads each file in the directory, 
splits the files, and generates the embeddings.  

Here is listing of code with comments noted using #: 

#import the OS library used for  
#reading the API key from a local  
#file and setting the required  
#environment variable  
#OPENAI_API_KEY. 
import os 
 
#Chroma is a vector data store that  
#allows us to store our embeddings. 
from langchain.vectorstores  
  import Chroma 

 
#OpenAIEmbeddings is used to create  
#the embedding for the documents as  
#well as the question. 
from langchain.embeddings.openai  
  import OpenAIEmbeddings 
 
#TextSplitter allows us to split 
#our input data into chunks. We  
#have to do this because the OpenAI  
#models have limits to the number 
#of tokens that can be passed to  
#the API.  For exampe the ada-001  
#model the max number of tokens is 
#2,049. 

4.  DATA COLLECTION 

5.  METHODOLOGY 

5.1  LangChain 
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from langchain.text_splitter  
  import    
    RecursiveCharacterTextSplitter 
 
#This is the LLM that is used from  
#OpenAI. 
from langchain.llms import OpenAI 

 
#This library is used for 
#retrieving the answer 
from langchain.chains  
  import RetrievalQA 
 
#These two libraries are used to  
#read a directory and load all PDF  
#files. 
from langchain.document_loaders  
  import PyPDFLoader 
from langchain.document_loaders  
  import DirectoryLoader 
 
#open file function used to open 
#the file that contains the  
#OpenAI API KEY 
def open_file(filepath): 
  with open(filepath, 'r',  
            encoding='utf-8')  
  as infile:  
    return infile.read() 
 
#Sets the environment variable  
#OPENAI_API_KEY 
os.environ['OPENAI_API_KEY']  
  = open_file('openaiapikey.txt') 
 
#This code loads all pdf files that  
#are in the docs directory 
loader =  
  DirectoryLoader 
    ('./docs/', 
     glob="./*.pdf",      
     loader_cls=PyPDFLoader) 
documents = loader.load() 

 
#splitting the text into 1000 byte 
#chunks. 
text_splitter = 
  RecursiveCharacterTextSplitter 
    (chunk_size=1000,  
     chunk_overlap=200) 
texts =  
  text_splitter.split_documents 
    (documents) 
 
#creates the embeddings and creates  
#a Chroma docsearch object that 
#will be used to retrieve the  
#answer to the question. 
embeddings = OpenAIEmbeddings() 
docsearch =  

  Chroma.from_documents 
    (texts, embeddings) 
qa = RetrievalQA.from_chain_type 
  (llm=OpenAI(),  
   chain_type="stuff",  
   retriever 
     =docsearch.as_retriever()) 
 
query = "What is required for SPP\ 
  two-factor authentication?” 
qa.run(query) 

The OpenAI code it more involved than the LangChain 
approach but it is easier to follow and understand what is 
happening. 

pdf_2_txt.py: This Python script uses the PyPDF2 and OS 
libraries to read all the pdf files in a directory, convert them 
to text, and save them to a file call input_docs.txt.  The 
input_docs.txt will be the input to the create_index.py 
script. 

import PyPDF2 
import os 
pdf_path = 
 '/Users/tyebsen/projects/docs/' 
for filename in os.listdir(pdf_path): 
  if filename.endswith('.pdf'): 
     reader = PyPDF2.PdfReader 
       (os.path.join(pdf_path,  
                     filename)) 
     for i in range(len(reader.pages)): 
       page = reader.pages[i] 
       page = page.extract_text() 
       page = " ".join(page.split()) 
       print(page) 
       file1 = 
         open(r"input_docs.txt","a") 
       file1.writelines(page) 
       file1.close() 

Create_index.py: This Python script reads the 
input_docs.txt file, and breaks the data into 3,000-byte 
chunks. For each chunk, it generates the embedding, 
saving the text and its embedding in a json formatted file 
called index.json. This file is used by the qa.py Python 
script to answer questions about the pdf files. We use 
3,000-byte chunks because it is safely under the model 
prompt limit of 4,000 bytes. 

Import openai 
import json 
import textwrap 
 
def open_file(filepath): 
  with open(filepath, 'r',    
            encoding='utf-8')  
  as infile: return infile.read() 

5.2  OpenAI 

Proceedings of the 15th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2024)

152



 
openai.api_key =  
  open_file('openaiapikey.txt') 
 
def gpt3_embedding 
  (content,  
   Engine 
     ='text-embedding-ada-002'): 
  response =  
    openai.Embedding.create 
      (input=content,engine=engine) 
  vector = # this is a normal list 
  response['data'][0]['embedding']  
  return vector 
 
if __name__ == '__main__': 
  alltext =  
    open_file('input_docs.txt') 
  chunks =  
    textwrap.wrap(alltext, 3000) 
  result = list() 
  for chunk in chunks: 
    embedding=gpt3_embedding 
      (chunk.encode 
        (encoding= 
          'ASCII', 
           errors='ignore' 
        ).decode() 
      ) 
    info =  
      {'content': chunk,  
       'vector': embedding} 
    print(info, '\n\n\n') 
    result.append(info) 
  with open('index.json', 'w')  
  as outfile: 
    json.dump(result, outfile, 
              indent=2) 

qa.py: This Python script is heavily based on Shapiro’s 
multi-document project that scans all the documents with 
the same question and returns the top 20 results. Shapiro 
used a dot product to determine the score. We updated the 
script to use cosine similarity for the score. Cosine 
similarity is what OpenAI recommends. The final answer 
is generated from a detailed summary of the 20 results. 

import openai 
import json 
import numpy as np 
import textwrap 
import re 
from time import time,sleep 
from numpy.linalg import norm 
 
def open_file(filepath): 
    with open(filepath, 'r', 
              encoding='utf-8')  
    as infile: return infile.read() 

 
openai.api_key =  
  open_file('openaiapikey.txt') 
 
def gpt3_embedding 
  (content,  
   engine= 
     'text-embedding-ada-002'): 
  content = content.encode 
    (encoding='ASCII', 
              errors='ignore' 
    ).decode()  
  response = 
    openai.Embedding.create 
      (input=content,engine=engine) 
  vector =   #this is a normal list 
   response['data'][0]['embedding'] 
  return vector 
 
def similarity(v1, v2):   
# return cosine similarity 
  return 
    np.dot(v1,v2)/norm(v1)*norm(v2) 
 
def search_index(text, data, 
                 count=20): 
    vector = gpt3_embedding(text) 
  scores = list() 
  for i in data: 
    score = similarity(vector,  
                       i['vector']) 
    scores.append 
      ({'content': i['content'],  
        'score': score}) 
  ordered = sorted 
    (scores,  
     key=lambda d: d['score'],  
     reverse=True) 
  return ordered[0:count] 
 
def gpt3_completion 
  (prompt,  
   engine='text-davinci-002',  
   temp=0.6, top_p=1.0,  
   tokens=2000, freq_pen=0.25, 
   pres_pen=0.0, stop=['<<END>>']): 
     max_retry = 5 
     retry = 0 
     prompt =  
       prompt.encode 
        (encoding='ASCII', 
         errors='ignore' 
        ).decode() 
     while True: 
       try: 
         response =  
           openai.Completion.create 
             (engine=engine, 
              prompt=prompt, 
              temperature=temp, 
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              max_tokens=tokens, 
              top_p=top_p, 
              frequency_penalty= 
                freq_pen, 
              presence_penalty= 
                pres_pen, 
              stop=stop 
             ) 
         text = response 
           ['choices'][0]['text'] 
           .strip() 
         text =  
           re.sub('\s+', ' ', text) 
         filename =  
           '%s_gpt3.txt' % time() 
         with open( 
           'gpt3_logs/%s'  
             % filename, 
           'w')  
         as outfile: 
outfile.write('PROMPT:\n\n'  
  + prompt +  
  '\n\n==========\n\nRESPONSE:\n\n'  
  + text) 
         return text 
       except Exception as oops: 
         retry += 1 
         if retry >= max_retry: 
           return "GPT3 error: %s"  
             % oops 
         print 
           ('Error communicating \ 
with OpenAI:',  
            oops) 
         sleep(1) 
 
if __name__ == '__main__': 
  with open('index.json', 'r')  
  as infile: 
    data = json.load(infile) 
  while True: 
    query = input("Enter your \ 
question here: ") 
    results =  
      search_index(query, data) 
    answers = list() 
      #answer the same question  
      #for all returned chunks 
    for result in results: 
      prompt=f"Use the following \ 
passage to give a detailed answer \ 
to the question:\n\QUESTION: \ 
{query}\n\nPASSAGE: \ 
{result['content']}\n\nDETAILED \ 
ANSWER:" 
      answer =  
        gpt3_completion(prompt) 
      answers.append(answer) 
    #summarize the  
    #answers together 

    all_answers =  
      '\n\n'.join(answers) 
    chunks = textwrap.wrap 
      (all_answers, 10000) 
    final = list() 
      for chunk in chunks: 
        prompt =  
f"Write a detailed summary of the \ 
following: {chunk}" 
        summary =  
          gpt3_completion(prompt) 
        final.append(summary) 
      print('\n\n=========\n\n', 
            '\n\n'.join(final)) 

Both approaches generated reasonable answers. However, 
the OpenAI approach generated much more detailed 
answers. The OpenAI approach required much more code, 
but we believe it provides a better understanding of what 
is actually happening with OpenAI. In comparison, the 
LangChain framework hides a lot of what is going on 
behind the scenes. 

We also scored each predicted answer with the actual 
answer from the documents using the cosine similarity 
calculation.  The LangChain answers scored better against 
the actual answers than the OpenAI method. Table 1 shows 
the LangChain results. 

This project shows that, using the latest advances in 
Artificial Intelligence (AI) and Natural Language 
Processing (NLP), a chatbot developer can produce a 
robust QA (Quality Assurance) system that can be used to 
assist customers. OpenAI was selected for use because is 
currently leading in the AI Natural Language Processing 
(NLP) field with generative-pretrained transformer 
models. OpenAI does charge a small fee for the use of their 
Application Programming Interfaces (APIs), but it was 
negligible for this project. 

We also chose the LangChain framework because of its 
ability to consume multiple documents. Although a lot of 
the processing is done behind the scenes, it is a powerful 
set of libraries that can be used to build AI applications 
albeit with a bigger learning curve than the OpenAI API. 

The OpenAI version needs some performance 
enhancements for a production system, as it otherwise can 
take too long to produce an answer. One thing to look at is 
lowering the number of results returned from the 
search_index function from 20. This could however 
possibly reduce the accuracy of the results. Further testing 
would need to be done. Further research could also be done 

6.  RESULTS 

7.  CONCLUSIONS 
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using vector stores like Chroma rather than a JSON 
(JavaScript Object Notation) formatted file. The 
LangChain version performs much better.  

For a production system, we would probably recommend 
the LangChain version. The code would be easier to 
maintain, the performance better, and using multiple pdf 
files (or any other type of files) is easier since it is only 
necessary to drop them into a folder without having to do 
format conversion or other manipulation. 

We conclude that Southwest Power Pool (SPP) and other 
organizations could benefit from an AI question answering 
chatbot system to assist users with their API questions. 
Additional performance, load, and accuracy testing would 
need to be done prior to production. User testing would 
also need to be done. Security would also be a 
consideration in a project like this, as hackers should not 
be able to use such a service to gain access to internal 
organization systems. 

It is important to note that SPP is a non-profit organization. 
A project that costs less than a certain limit would not 
normally be subject to a cost-based analysis. Also, these 
types of projects would best be discussed in multiple 
working groups made up of SPP members and staff to 
determine the viability of the project, as could be 
recommended for other organizations as well. 

To calculate the “people cost,” the rate of $41.00 was used 
as it is published in the Department of Labor “Employer 
Costs for Employee Compensation – March 2023” report. 
The Open AI cost was priced at 12,000 transactions at 
approximately $0.00700 per transaction (https://gptforwo 
rk.com/tools/openai-chatgpt-api-pricing-calculator). 

Additional research could be done in providing metrics for 
a production QA (Quality Assurance) system. These 
metrics would be used to determine how the QA system is 
performing based on metrics such as conversation length, 
number of conversations, number of unique users, human 
takeover rate, and others. Michelle Cyca describes these 
metrics in the article “Chatbot Analytics 101: Essential 
Metrics to Track” (Cyca, 2022). 

More research could also be done with different OpenAI 
models. This project used the text-embedding-ada-002 
engine for the embeddings and text-divinci-002 for the 
completions. 
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Table 1: LangChain Results 
 

QuesƟon Answer LangChain Answer COSINE Similarity Score 
1) What is required 
for SPP two-factor 
authenƟcaƟon? 

In order to authenticate, 
users or applications 
accessing the User 
Interfaces (UIs) and APIs 
must present a valid x509 
certificate and present a 
second authentication factor.  

A valid x509 client 
CerƟficate Authority (CA) 
that is trusted by SPP and a 
login ID (IdenƟficaƟon) and 
password. 

0.849 

2) What is the 
integrated 
marketplace two-
factor 
authenƟcaƟon? 

In order to authenticate, 
users or applications 
accessing the UIs and APIs 
must present a valid x509 
certificate and present a 
second authentication factor.  

The integrated marketplace 
two-factor authenƟcaƟon 
requires users to present a 
valid x509 cerƟficate and a 
second authenƟcaƟon 
factor, such as a login ID 
and password. 

0.933 

3) What is the format 
of the request 
header? 

The concatenated token, 
made up of the Request 
Created Timestamp, 
Request Nonce, and       
Hash-based message 
authentication code(HMAC) 
Sha512 Hash, concatenated 
together and separated by 
hyphens.  

 

The request header consists 
of the Request Created 
Timestamp, Request Nonce, 
and HMAC Sha512 Hash, 
concatenated together and 
separated by hyphens. 

0.954 

4) What is the format 
of the token? 

requestCreated + “-“ + 
requestNonce + “-“  

 

The token is a Nonce and 
HMAC Sha512 Hash, 
concatenated together and 
separated by hyphens. 

0.823 

5) What is the format 
of the Ɵmestamp? 

yyyy-Mdd’T’HH:mm:ss’Z’ 
where ‘T’ is the literal 
character T and ‘Z’ is the 
literal character Z.  

 

The format of the 
Ɵmestamp is yyyy-MM-
dd'T'HH:mm:ss'Z', with yyyy 
being the 4 digit year, MM 
being the 2 digit month (01-
12), dd being the 2 digit day 
(01-31), HH being the 2 
digit hour (00-23), mm 
being the 2 digit minute 
(00-59), and ss being the 2 
digit second (00-50). 

0.880 
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