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ABSTRACT 

 

Chatbots and the technology behind them are widely used in 

many places and in various ways. Retrieval Augmented 

Generation AI framework has gained its popularity by its linking 

of large language model with private dataset. It enables one to 

run AI locally and privately with the most updated information 

and knowledge. In this report, we aim to improve the local private 

chatbot response time by using a cache. From our experimental 

results, the majority of time spent during the query process is in 

the generation of the response. The response time can be 

significantly improved when there is a hit on the cache system 

which enables us to return the response to the user immediately 

without going through the generation step. In this report, we 

focus our efforts on improving the turnaround time of the 

generation step.  The cache is organized into categories which 

can be used for efficient searching. User’s query information 

such as query string, embedding information, and its response are 

recorded and stored in the cache. Experiment results are 

presented and the issues of speed up of request response 

turnaround time is addressed.  
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Artificial Intelligence (AI) has evolved rapidly due to 

advancements in machine learning and natural language 

processing (NLP). Devlin et al. revolutionized the field of NLP 

by demonstrating how pre-trained transformers can achieve great 

performance in various tasks like answering questions and 

conversational AI [1].  While chatbots have been around for some 

time, they have recently gained recognition after ChatGPT 

became viral in 2022. Brown et al. presented a large-scale 

transformer model GPT-3 that displayed the potential capability 

for creating conversational agents and QA systems [2]. Chatbots 

and the technology behind them are widely used in many places 

and in various ways. For example, in the hospitality industry, 

Athikkal and Jenq implemented a hospitality voice chatbot to 

answer various questions related to a hotel application [3]. Wang 

et al., proposes an experiment of counseling hospitality 

employees using conversational AI chatbots [4]. 

 

Large language models (LLM), which are used in Generative AI 

applications, has become increasingly important in many areas as 

it provides natural language processing capabilities, prediction 

analysis, and help in the decision-making process.  LangChain is 

an AI framework that integrates with external tools to form an 

ecosystem by collecting all the required components for creating 

private chatbots quicker. For how LangChain can be used to 

simplify the integration of LLM and applications, see [5]. 

 

Ma et al., discussed how LLMs is used in food science 

application in [6]. In the management field, Aguinis et al., 

showed how AI can help people quickly finish tasks, like human 

resources management [7]. In contract management, Wong et al., 

discussed how to incorporate construction contract domain 

knowledge to enhance language models which help identify 

construction contract risks in order to avoid loss [8].   

 

In the medical fields, Olszewski et al., compared five chatbots 

(Gemini, Microsoft Copilot, PiAI, ChatGPT, ChatSpot) from the 

internet to study the quality of these chatbots in the area of 

cardiovascular health and concluded that chatbots vary in length, 

quality, and readability [9]. In [10], Alkhalaf et al., experiment to 

extract malnutrition information by using the efficacy of zero-

shot prompt engineering and RAG to summarize both structured 

and unstructured data. Hart et al., investigated the use of LLMs 

in the areas of clinical and anatomic pathology [11]. 

 

In this paper we use caching to improve the performance of local 

private AI chatbots which can be on run on a Flask server. The 

idea of caching has been used for many years to improve the 

performance of computer systems and internet proxy servers. 

Cache memory was first developed in the computer hardware 

design of memory hierarchy. The CPU can access the cache more 

quickly compared with the main memory. The concept was used 

on the paging system design to allow fast retrieval of memory 

page. It is a deterministic mapping process. To access a target 

block of memory such as a page in the main memory, one first 

checks if the target is in the cache memory. The result is either a 

hit or a miss. A similar idea can be extended to proxy server 

design, which stores the web page item and its content on the 

server’s local storage. When there is a request from user’s agent, 

the browser, to a particular web page or item, such as an image, 

the item stored on the proxy server can then be returned to the 

request computer immediately without request to the server that 

owns that item. This significantly reduces the network traffic and 

speeds up the turnaround time. 

 

The main purpose for both examples, computer system memory 

management and proxy server web item management, is to 

shorten the total time of the request and response cycle. Most of 

today’s LLMs use a probabilistic approach instead of a 

deterministic approach. Retrieval Augmented Generation 

(RAG), a term coined by Lewis et al., [12] is an AI framework 

which intends to link the generative AI with specific source of 

domain knowledge or information, such as the most current 

information about a company’s new regulations, or a new school 

policy, or new medical research results, etc.  This information 

may not be available on the Internet but can be embedded into 

the vector store in order to become available for retrieval 

processing.  The system will then retrieve specific information 

and augment with the LLM to generate a response to the user. As 

stated by [13], "almost any business can turn its technical or 

policy manuals, videos or logs into resources called knowledge 

bases that can enhance LLMs.” 

1.  INTRODUCTION 
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According to Bolliboina and Jenq in [14], the private local AI 

chatbots can solve the privacy and security concerns for some 

industries such as the banking industry. But it is slower in 

response time when compared with the public chatbots. In this 

report, we aim to improve the response time by introducing a 

caching component. Unlike most of today’s programming 

languages which are unambiguous, natural languages are 

ambiguous. Often times, its meaning is context sensitive. Not 

only that, one can form various sentences which have the same 

or similar meanings. If we were to implement a caching 

component to speed up the process, we have to answer several 

questions: (a) How do we organize and categorize these queries 

together so we don’t waste our storage while caching and trying 

to achieve the speed up? and (b) How do we map a query to its 

slot and retrieve the answer or possible answers? In this report, 

we try to answer both of these questions. 

 

In section 2, we outline the system design and its implementation. 

Section 3 contains of the experimental results and concluding 

remarks are in section 4. Section 5 lists some of the possibilities 

for future work and improvements. 

 

 

 

IMPLEMENTATION 

 

In this report, we utilize Python’s ollama and chromadb modules. 

The chroma module is used in our project to create the vector 

embeddings. The ollama module is used for generating responses 

to a user’s query. Figure 1 shows the process of the vector 

embedding. We used the RecursiveCharacterTextSplitter text 

splitter of LangChain to split the pdf files into document chunks. 

This procedure allows us to set chunk size and the overlap size. 

These document chunks are fed into the embedding process 

which will generate a vector embedding and be stored into the 

vector store. A smaller chunk size will increase the total number 

of documents generated, while a larger chunk size decreases the 

number of documents and therefore reduces the number of 

embeddings in our vector collection. Our program uses 

chromadb’s persistent client to create a vector store which will 

store the vector on the local disk so we don’t have to create the 

vector store repeatedly each time we start the program. 

 

 

 

 

 

 

 

 

 

 

 

 

An embedding is a numerical representation of a piece of 

information.  For example, an embedding can be used to 

represent a text, a document, an image, or audio, etc. Thus, it is a 

translation process.  Text embedding translates words into 

meaningful numbers and the resulting numbers (a list) are 

deterministic and carry meaning, so the vector (the list of 

numbers) is also deterministic and therefore carry meaning. 

Similarly, image embedding translates pictures into a vector 

based on categories, such as the type of animal, flower, color, 

background, etc.  Once again, it is a list of numbers that 

represents the object under our consideration. Therefore, given a 

text embedding, we can determine what kind of image a sentence 

describes, and the same can be done with an audio or video 

embedding. Embeddings can be used in works such as clustering, 

searching, classification, recommendation, etc. The idea behind 

using embeddings to do the above-mentioned tasks is because 

embeddings process enables us to find the k nearest neighbors in 

a n-dimensional space using the distance between embeddings. 

 

Different models have different dimensions n. For example, 

ollama embeddings have 768 dimensions for nomic-embed-text 

model and 4096 dimensions for mistral model. We use the default 

embedding of Chroma. Citing from [15], "by default, Chroma 

uses the Sentence Transformers all-MiniLM-L6-v2 model to 

create embeddings. This embedding model can create sentence 

and document embeddings that can be used for a wide variety of 

tasks."  The all-MiniLM-L6-v2 generates vector of 384 

dimensions.  

 

The distance between two embeddings represents the similarity 

between the two pieces of information.  The most common 

distance function is cosine similarity, which uses the cosine value 

to determine the similarity. A smaller value means increased 

similarity between two vectors. There are several metrics used to 

measure the distance between two embeddings. For example, 

Chroma currently supports three measurements: cosine, 

Euclidean (L2) and Inner Product. The default distance function 

is L2. Both cosine and L2 are good for text similarity, but because 

L2 is more sensitive to noise, we choose cosine in this report. For 

ChromaDB distance functions, see [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the query request and response cycle.  The user 

is prompted to enter a query. This query will be used to call the 

embedding function to embed into its vector format. This query 

embedding is then used to retrieve similar documents based on 

the similarity search function. The number of documents to 

return in this stage can be pre-determined in our program. In our 

experiments, we set 10 as the number of documents to return so 

that we can do other further experiments. After this, we prepare 

data for the generator. We experiment with varying number of 

documents and fine tune to see which is the best. After the data 

is fed into the generator, the generator uses the user’s query and 

Figure 1. Vector Embedding 

Figure 2. Query Request and Response Process 

2.  SYSTEM CONFIGURATION AND 

Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2024)

69



the meaning embedded inside the embeddings to make an 

inference and generate its output to the user. 

 

In order for us to generate a response based on the documents 

found, we use ollama as our inference engine to generate the 

response. We import ollama module to create an instance of the 

ollama model to generate query response based on the data from 

the previous described retrieval process.  The pre-trained model 

we used in this report is llama2 and its total size is 3.8G when we 

downloaded its latest version from the Internet. In our 

experiment, the generator takes the longest time to generate the 

results in the whole request and response process. Most of the 

queries required a few tens of seconds on the local computer to 

generate the response which was returned to the user without 

using cache. In order for us to speed up the whole process, we 

can improve the first step to load the all embeddings to disk 

storage rather than doing it each time we start the system. The 

second way to improve the performance is to reduce the number 

of documents which are stored to the system. But because 

reducing the number of chunks means increasing the chunk size, 

that may result in the inclusion of too many texts in one chunk 

and therefore introduce noise. The other way to improve the 

performance is to search the similarity faster. This depends on 

the dimensions of the embedding, which depends on the language 

model we are using. In this report we are using mini language 

model, sometime was called as small language model (SLM) for 

embedding.  

 

As for cache, the main purpose of using it is to store some objects 

on a faster device (hardware cache) or data structure (software 

cache) so they can be retrieved quickly when we need them. 

Here, we introduce a software cache data structure to improve the 

performance in the generation stage. The common way to 

organize a cache is to store the most frequently needed objects in 

the cache store so that each time we need them, we can always 

find them. We create different levels in the cache to hold various 

words of users’ queries. One possibility is to hold the most used 

term in the top level to search as it is the term that we will most 

likely encounter. This method would use a term-based approach 

to categorize the terms to include in each level based on how 

often the terms appear on all documents in our application, i.e., 

the terms to be included will be determined by the word counts 

in our source documents (pdf file, csv, files, etc.).  

 

Instead of using this approach, we implement a different 

approach in our project. In the current project, we build three 

levels of cache. The first level consists of key terms such as dict, 

class, tuple, string, list, etc.  The second level includes terms such 

as import, def, etc. The third level consists of Python built-in 

function names. The argument behind this arrangement is based 

on our knowledge of organizing a collection of topics, sub-topics, 

etc.  Let’s consider how most books or documents, or web sites 

are organized. For example, a book is divided into several 

chapters. Each chapter represents a particular concept and is itself 

a sub domain of the book’s domain, the book name. One can 

continue this process and generate a tree structure as the book’s 

table of content. A website has similar organization. A website 

map usually is a kind of tree structures. Similarly, a company or 

an organization has the similar hierarchical structure. In order for 

us to find information from a book, we use keywords to narrow 

down and find the page number(s) which are related to our 

question. Hopefully, these page numbers which are 

corresponding to our document chunks can give us good 

matches.   

 

3.  EXPERIMENTAL RESULTS 

 

Figure 3 shows comparisons of sample query running times. The 

first column shows the user queries. The second column shows 

the response time when the three best documents returned from 

the embedding similarity search procedure were used. The use of 

three documents is acceptable since our implementation returns 

more than three documents, along with their distances and 

embeddings, from the retrieval process. The third column 

indicates the response time when two best documents are used as 

data input to the generator.  

 

Since cache are used, when same or similar queries are presented 

to the system, and when there is cache hit, the speed up is 

significant. For example, when questions "What is the difference 

between list and tuple?" and "Can you distinguish tuple from 

list?", are asked, it saved 75,610 microseconds. Because our 

system determined that they are similar questions, it generates a 

cache hit and the response is readily available to return to the 

user.  According to our experiment experiences, the retrieval time 

which required similar search is in the millisecond time range, 

while the generative of answers are in the range of a few tens of 

seconds. Most of the running time spent in the process from 

request to response is the generation time. By using cache, we try 

to avoid that generation process and can significantly save time 

in our particular application.   

 

By using persistent client of chroma to save the embeddings to 

local disk storage, as many researchers have also done to save 

time, it allows users to use the system immediately. 

 

The chunk size will affect the performance in terms of running 

time and quality of responses. When chunk size is too big, some 

information may be truncated by our embedding function, since 

the all-MiniLM-L6-v2 model truncates all input to a maximum 

of 256 tokens. The chunk size and chunk overlap size requires 

fine tuning for different use cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  CONCLUSION REMARKS 

 

We aim to use a cache data structure to speed up the chat between 

human user and an AI chatbot on the local machine. Cache was 

used to store the queries and their corresponding responses. If the 

system believes there is a good match between the new query and 

any of the existing queries in the system cache, the system will 

claim a cache hit and the response is immediately sent back to 

the user by fetching the response from the cache. If there is a 

Figure 3. Comparison of Response Times  
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miss, then a normal procedure will be followed by starting with 

embedding the user query. It will be followed by finding the best 

matches from the system embedding to retrieve the related 

documents. The last stage is to use the predetermined number of 

matched documents and the user query to feed into the generator 

of language model to generate the response.   

 

Although it is unlikely a user will ask same question again and 

again so we can justify using cache to speed up the response 

process, it is beneficial if the cache is deployed into an AI  proxy 

server of a private company which doesn’t want their employees 

to use public AI but want its employee to gain the advantage of 

using AI.  

 

 

5.  FUTURE WORK AND IMPROVEMENT 

 

There are various areas where additional investigation and 

experimentation can be done.  How we categorize terms, 

keywords, features in our particular application into various 

categories levels and sub levels to ensure the quality and speed 

up of responses is one interesting topic worth further pursuit. 

 

There is much more work needed on improving the quality of the 

responses which are generated by the current system. It depends 

on the quality of the original pdf file, text files, or csv files, etc 

are used, i.e., the sources of information are very important. For 

example, if we use false information source, then no matter how 

good our model is, we still output wrong information to user. 

Assuming all the source files are truthful, we still may get odd or 

unexpected answers. Finding ways to ensure that the system 

always generates correct and useful responses is another 

challenging research topic worth considering.  

 

Another aspect of improving response quality is the chunk size 

of our document splitting. As mentioned, bigger chunk sizes 

generate noise and sometimes increasing the size as much as 

possible may even generate wrong information. So, the question 

is: for different application how do we quickly fine tune the 

chunk size and overlap size to guarantee the best performance in 

terms of time and quality? 

 

Lastly, one of the most challenging aspects of is the validation of 

a response.  If a user asks the AI system to verify and validate 

something, can the system do it?  For example, if we ask "Is ['a', 

123, {'45':789}] a Python list?", the system might answer “no”. 

It will analyze and correctly identify 'a' as a valid string, 123 as 

an integer, and {'45':789} as a valid dictionary, but incorrectly 

categorize the whole thing as not a list because it is not mentioned 

in the source files or the chunk that was selected among the k 

nearest neighbors. In an online system, the same query returns a 

“yes”, but modifying the query to "Is ['a', 123, {'45':789] a Python 

list?" will also result in the system answering “yes”, even though 

we can easily observe the syntax error. Thus, it is worth 

considering how to build a validation AI agent. 
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