

Improving Performance of Local Chatbot with Caching

John JENQ

 School of Computing, Montclair State University

Montclair, NJ 07043, USA

ABSTRACT

Chatbots and the technology behind them are widely used in

many places and in various ways. Retrieval Augmented

Generation AI framework has gained its popularity by its linking

of large language model with private dataset. It enables one to

run AI locally and privately with the most updated information

and knowledge. In this report, we aim to improve the local private

chatbot response time by using a cache. From our experimental

results, the majority of time spent during the query process is in

the generation of the response. The response time can be

significantly improved when there is a hit on the cache system

which enables us to return the response to the user immediately

without going through the generation step. In this report, we

focus our efforts on improving the turnaround time of the

generation step. The cache is organized into categories which

can be used for efficient searching. User’s query information

such as query string, embedding information, and its response are

recorded and stored in the cache. Experiment results are

presented and the issues of speed up of request response

turnaround time is addressed.

Keywords: Chatbot, Cache, Embeddings, Similarity Search,

LLM, RAG

Artificial Intelligence (AI) has evolved rapidly due to

advancements in machine learning and natural language

processing (NLP). Devlin et al. revolutionized the field of NLP

by demonstrating how pre-trained transformers can achieve great

performance in various tasks like answering questions and

conversational AI [1]. While chatbots have been around for some

time, they have recently gained recognition after ChatGPT

became viral in 2022. Brown et al. presented a large-scale

transformer model GPT-3 that displayed the potential capability

for creating conversational agents and QA systems [2]. Chatbots

and the technology behind them are widely used in many places

and in various ways. For example, in the hospitality industry,

Athikkal and Jenq implemented a hospitality voice chatbot to

answer various questions related to a hotel application [3]. Wang

et al., proposes an experiment of counseling hospitality

employees using conversational AI chatbots [4].

Large language models (LLM), which are used in Generative AI

applications, has become increasingly important in many areas as

it provides natural language processing capabilities, prediction

analysis, and help in the decision-making process. LangChain is

an AI framework that integrates with external tools to form an

ecosystem by collecting all the required components for creating

private chatbots quicker. For how LangChain can be used to

simplify the integration of LLM and applications, see [5].

Ma et al., discussed how LLMs is used in food science

application in [6]. In the management field, Aguinis et al.,

showed how AI can help people quickly finish tasks, like human

resources management [7]. In contract management, Wong et al.,

discussed how to incorporate construction contract domain

knowledge to enhance language models which help identify

construction contract risks in order to avoid loss [8].

In the medical fields, Olszewski et al., compared five chatbots

(Gemini, Microsoft Copilot, PiAI, ChatGPT, ChatSpot) from the

internet to study the quality of these chatbots in the area of

cardiovascular health and concluded that chatbots vary in length,

quality, and readability [9]. In [10], Alkhalaf et al., experiment to

extract malnutrition information by using the efficacy of zero-

shot prompt engineering and RAG to summarize both structured

and unstructured data. Hart et al., investigated the use of LLMs

in the areas of clinical and anatomic pathology [11].

In this paper we use caching to improve the performance of local

private AI chatbots which can be on run on a Flask server. The

idea of caching has been used for many years to improve the

performance of computer systems and internet proxy servers.

Cache memory was first developed in the computer hardware

design of memory hierarchy. The CPU can access the cache more

quickly compared with the main memory. The concept was used

on the paging system design to allow fast retrieval of memory

page. It is a deterministic mapping process. To access a target

block of memory such as a page in the main memory, one first

checks if the target is in the cache memory. The result is either a

hit or a miss. A similar idea can be extended to proxy server

design, which stores the web page item and its content on the

server’s local storage. When there is a request from user’s agent,

the browser, to a particular web page or item, such as an image,

the item stored on the proxy server can then be returned to the

request computer immediately without request to the server that

owns that item. This significantly reduces the network traffic and

speeds up the turnaround time.

The main purpose for both examples, computer system memory

management and proxy server web item management, is to

shorten the total time of the request and response cycle. Most of

today’s LLMs use a probabilistic approach instead of a

deterministic approach. Retrieval Augmented Generation

(RAG), a term coined by Lewis et al., [12] is an AI framework

which intends to link the generative AI with specific source of

domain knowledge or information, such as the most current

information about a company’s new regulations, or a new school

policy, or new medical research results, etc. This information

may not be available on the Internet but can be embedded into

the vector store in order to become available for retrieval

processing. The system will then retrieve specific information

and augment with the LLM to generate a response to the user. As

stated by [13], "almost any business can turn its technical or

policy manuals, videos or logs into resources called knowledge

bases that can enhance LLMs.”

1. INTRODUCTION

Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2024)

68 https://doi.org/10.54808/WMSCI2024.01.68ISBN: 978-1-950492-79-4
ISSN: 2771-0947

According to Bolliboina and Jenq in [14], the private local AI

chatbots can solve the privacy and security concerns for some

industries such as the banking industry. But it is slower in

response time when compared with the public chatbots. In this

report, we aim to improve the response time by introducing a

caching component. Unlike most of today’s programming

languages which are unambiguous, natural languages are

ambiguous. Often times, its meaning is context sensitive. Not

only that, one can form various sentences which have the same

or similar meanings. If we were to implement a caching

component to speed up the process, we have to answer several

questions: (a) How do we organize and categorize these queries

together so we don’t waste our storage while caching and trying

to achieve the speed up? and (b) How do we map a query to its

slot and retrieve the answer or possible answers? In this report,

we try to answer both of these questions.

In section 2, we outline the system design and its implementation.

Section 3 contains of the experimental results and concluding

remarks are in section 4. Section 5 lists some of the possibilities

for future work and improvements.

IMPLEMENTATION

In this report, we utilize Python’s ollama and chromadb modules.

The chroma module is used in our project to create the vector

embeddings. The ollama module is used for generating responses

to a user’s query. Figure 1 shows the process of the vector

embedding. We used the RecursiveCharacterTextSplitter text

splitter of LangChain to split the pdf files into document chunks.

This procedure allows us to set chunk size and the overlap size.

These document chunks are fed into the embedding process

which will generate a vector embedding and be stored into the

vector store. A smaller chunk size will increase the total number

of documents generated, while a larger chunk size decreases the

number of documents and therefore reduces the number of

embeddings in our vector collection. Our program uses

chromadb’s persistent client to create a vector store which will

store the vector on the local disk so we don’t have to create the

vector store repeatedly each time we start the program.

An embedding is a numerical representation of a piece of

information. For example, an embedding can be used to

represent a text, a document, an image, or audio, etc. Thus, it is a

translation process. Text embedding translates words into

meaningful numbers and the resulting numbers (a list) are

deterministic and carry meaning, so the vector (the list of

numbers) is also deterministic and therefore carry meaning.

Similarly, image embedding translates pictures into a vector

based on categories, such as the type of animal, flower, color,

background, etc. Once again, it is a list of numbers that

represents the object under our consideration. Therefore, given a

text embedding, we can determine what kind of image a sentence

describes, and the same can be done with an audio or video

embedding. Embeddings can be used in works such as clustering,

searching, classification, recommendation, etc. The idea behind

using embeddings to do the above-mentioned tasks is because

embeddings process enables us to find the k nearest neighbors in

a n-dimensional space using the distance between embeddings.

Different models have different dimensions n. For example,

ollama embeddings have 768 dimensions for nomic-embed-text

model and 4096 dimensions for mistral model. We use the default

embedding of Chroma. Citing from [15], "by default, Chroma

uses the Sentence Transformers all-MiniLM-L6-v2 model to

create embeddings. This embedding model can create sentence

and document embeddings that can be used for a wide variety of

tasks." The all-MiniLM-L6-v2 generates vector of 384

dimensions.

The distance between two embeddings represents the similarity

between the two pieces of information. The most common

distance function is cosine similarity, which uses the cosine value

to determine the similarity. A smaller value means increased

similarity between two vectors. There are several metrics used to

measure the distance between two embeddings. For example,

Chroma currently supports three measurements: cosine,

Euclidean (L2) and Inner Product. The default distance function

is L2. Both cosine and L2 are good for text similarity, but because

L2 is more sensitive to noise, we choose cosine in this report. For

ChromaDB distance functions, see [16].

Figure 2 shows the query request and response cycle. The user

is prompted to enter a query. This query will be used to call the

embedding function to embed into its vector format. This query

embedding is then used to retrieve similar documents based on

the similarity search function. The number of documents to

return in this stage can be pre-determined in our program. In our

experiments, we set 10 as the number of documents to return so

that we can do other further experiments. After this, we prepare

data for the generator. We experiment with varying number of

documents and fine tune to see which is the best. After the data

is fed into the generator, the generator uses the user’s query and

Figure 1. Vector Embedding

Figure 2. Query Request and Response Process

2. SYSTEM CONFIGURATION AND

Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2024)

69

the meaning embedded inside the embeddings to make an

inference and generate its output to the user.

In order for us to generate a response based on the documents

found, we use ollama as our inference engine to generate the

response. We import ollama module to create an instance of the

ollama model to generate query response based on the data from

the previous described retrieval process. The pre-trained model

we used in this report is llama2 and its total size is 3.8G when we

downloaded its latest version from the Internet. In our

experiment, the generator takes the longest time to generate the

results in the whole request and response process. Most of the

queries required a few tens of seconds on the local computer to

generate the response which was returned to the user without

using cache. In order for us to speed up the whole process, we

can improve the first step to load the all embeddings to disk

storage rather than doing it each time we start the system. The

second way to improve the performance is to reduce the number

of documents which are stored to the system. But because

reducing the number of chunks means increasing the chunk size,

that may result in the inclusion of too many texts in one chunk

and therefore introduce noise. The other way to improve the

performance is to search the similarity faster. This depends on

the dimensions of the embedding, which depends on the language

model we are using. In this report we are using mini language

model, sometime was called as small language model (SLM) for

embedding.

As for cache, the main purpose of using it is to store some objects

on a faster device (hardware cache) or data structure (software

cache) so they can be retrieved quickly when we need them.

Here, we introduce a software cache data structure to improve the

performance in the generation stage. The common way to

organize a cache is to store the most frequently needed objects in

the cache store so that each time we need them, we can always

find them. We create different levels in the cache to hold various

words of users’ queries. One possibility is to hold the most used

term in the top level to search as it is the term that we will most

likely encounter. This method would use a term-based approach

to categorize the terms to include in each level based on how

often the terms appear on all documents in our application, i.e.,

the terms to be included will be determined by the word counts

in our source documents (pdf file, csv, files, etc.).

Instead of using this approach, we implement a different

approach in our project. In the current project, we build three

levels of cache. The first level consists of key terms such as dict,

class, tuple, string, list, etc. The second level includes terms such

as import, def, etc. The third level consists of Python built-in

function names. The argument behind this arrangement is based

on our knowledge of organizing a collection of topics, sub-topics,

etc. Let’s consider how most books or documents, or web sites

are organized. For example, a book is divided into several

chapters. Each chapter represents a particular concept and is itself

a sub domain of the book’s domain, the book name. One can

continue this process and generate a tree structure as the book’s

table of content. A website has similar organization. A website

map usually is a kind of tree structures. Similarly, a company or

an organization has the similar hierarchical structure. In order for

us to find information from a book, we use keywords to narrow

down and find the page number(s) which are related to our

question. Hopefully, these page numbers which are

corresponding to our document chunks can give us good

matches.

3. EXPERIMENTAL RESULTS

Figure 3 shows comparisons of sample query running times. The

first column shows the user queries. The second column shows

the response time when the three best documents returned from

the embedding similarity search procedure were used. The use of

three documents is acceptable since our implementation returns

more than three documents, along with their distances and

embeddings, from the retrieval process. The third column

indicates the response time when two best documents are used as

data input to the generator.

Since cache are used, when same or similar queries are presented

to the system, and when there is cache hit, the speed up is

significant. For example, when questions "What is the difference

between list and tuple?" and "Can you distinguish tuple from

list?", are asked, it saved 75,610 microseconds. Because our

system determined that they are similar questions, it generates a

cache hit and the response is readily available to return to the

user. According to our experiment experiences, the retrieval time

which required similar search is in the millisecond time range,

while the generative of answers are in the range of a few tens of

seconds. Most of the running time spent in the process from

request to response is the generation time. By using cache, we try

to avoid that generation process and can significantly save time

in our particular application.

By using persistent client of chroma to save the embeddings to

local disk storage, as many researchers have also done to save

time, it allows users to use the system immediately.

The chunk size will affect the performance in terms of running

time and quality of responses. When chunk size is too big, some

information may be truncated by our embedding function, since

the all-MiniLM-L6-v2 model truncates all input to a maximum

of 256 tokens. The chunk size and chunk overlap size requires

fine tuning for different use cases.

4. CONCLUSION REMARKS

We aim to use a cache data structure to speed up the chat between

human user and an AI chatbot on the local machine. Cache was

used to store the queries and their corresponding responses. If the

system believes there is a good match between the new query and

any of the existing queries in the system cache, the system will

claim a cache hit and the response is immediately sent back to

the user by fetching the response from the cache. If there is a

Figure 3. Comparison of Response Times

Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2024)

70

miss, then a normal procedure will be followed by starting with

embedding the user query. It will be followed by finding the best

matches from the system embedding to retrieve the related

documents. The last stage is to use the predetermined number of

matched documents and the user query to feed into the generator

of language model to generate the response.

Although it is unlikely a user will ask same question again and

again so we can justify using cache to speed up the response

process, it is beneficial if the cache is deployed into an AI proxy

server of a private company which doesn’t want their employees

to use public AI but want its employee to gain the advantage of

using AI.

5. FUTURE WORK AND IMPROVEMENT

There are various areas where additional investigation and

experimentation can be done. How we categorize terms,

keywords, features in our particular application into various

categories levels and sub levels to ensure the quality and speed

up of responses is one interesting topic worth further pursuit.

There is much more work needed on improving the quality of the

responses which are generated by the current system. It depends

on the quality of the original pdf file, text files, or csv files, etc

are used, i.e., the sources of information are very important. For

example, if we use false information source, then no matter how

good our model is, we still output wrong information to user.

Assuming all the source files are truthful, we still may get odd or

unexpected answers. Finding ways to ensure that the system

always generates correct and useful responses is another

challenging research topic worth considering.

Another aspect of improving response quality is the chunk size

of our document splitting. As mentioned, bigger chunk sizes

generate noise and sometimes increasing the size as much as

possible may even generate wrong information. So, the question

is: for different application how do we quickly fine tune the

chunk size and overlap size to guarantee the best performance in

terms of time and quality?

Lastly, one of the most challenging aspects of is the validation of

a response. If a user asks the AI system to verify and validate

something, can the system do it? For example, if we ask "Is ['a',

123, {'45':789}] a Python list?", the system might answer “no”.

It will analyze and correctly identify 'a' as a valid string, 123 as

an integer, and {'45':789} as a valid dictionary, but incorrectly

categorize the whole thing as not a list because it is not mentioned

in the source files or the chunk that was selected among the k

nearest neighbors. In an online system, the same query returns a

“yes”, but modifying the query to "Is ['a', 123, {'45':789] a Python

list?" will also result in the system answering “yes”, even though

we can easily observe the syntax error. Thus, it is worth

considering how to build a validation AI agent.

6. REFERENCES

[1] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).

"BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding" arXiv preprint

arXiv:1810.04805.

[2] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,

Winter, C., Radford, A. (2020). "Language Models are Few-

Shot Learners". arXiv preprint arXiv:2005.14165.

[3] Sagina Athikkal and John Jenq, "An Implementation of

Voice Assistant for Hospitality", Signal & Image

Processing: An International Journal (SIPIJ) Vol.13,

No.2/3/4, August 2022

[4] Yao-Chin Wang, Oscar Hengxuan Chi, Hiroaki Saito, Yue

(Darcy) Lu, "Conversational AI chatbots as counselors for

hospitality employees", International Journal of Hospitality

Management 122 (2024) 103861

[5] Janakiram MSV, "A brief guide to LangChain for software

developers", Aug. 28, 2023,

https://www.infoworld.com/article/3705097/a-brief-guide-

to-langchain-for-software-developers.html,

[6] Peihua Ma, Shawn Tsai, Yiyang He , Xiaoxue Jia ,

Dongyang Zhen, Ning Yu, Qin Wang, Jaspreet K.C. Ahuja,

Cheng-I Wei, "Large language models in food science:

Innovations, applications, and future", Trends in Food

Science & Technology, Volume 148, June 2024 104488

[7] J Herman Aguinis, Jose R. Beltran, and Amando Cope,

"How to use generative AI as a human resource

management assistant", Organizational Dynamics,

ORGDYN 53 (2024) 101029

[8] Saika Wong, Chunmo Zheng, Xing Su, Yinqiu Tang,

"Construction contract risk identification based on

knowledge augmented language models", Computers in

Industry 157-158 (2024) 104082

[9] Robert Olszewski, Klaudia Watros, Małgorzata Manczak,

Jakub Owoc, Krzysztof Jeziorski, Jakub Brzezinski,

"Assessing the response quality and readability of chatbots

in cardiovascular health, oncology, and psoriasis: A

comparative study", International Journal of Medical

Informatics, 190 (2024) 105562

[10] Mohammad Alkhalaf, Ping Yu, Mengyang Yin, Chao Deng,

"Applying generative AI with retrieval augmented

generation to summarize and extract key clinical

information from electronic health records", Journal of

Biomedical Informatics, 156 (2024) 104662

[11] Steven N. Hart, Noah G. Hoffman, Peter Gershkovich,

Chancey Christenson, David S.M Clintock, Lauren J.

Miller, Ronald Jackups, Vahid Azimi, Nicholas Spies,

Victor Brodsky, "Organizational preparedness for the use of

large language models in pathology informatics", Journal of

Pathology Informatics, 14 (2023) 100338

[12] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio

Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich

Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,

Sebastian Riedel, Douwe Kiela, "Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks",

https://arxiv.org/pdf/2005.11401

[13] Nvidia, "What is retrieval augmented generation",

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-

generation/#:~:text=Patrick%20Lewis,%20lead%20author

[14] Pavan Sai Bolliboina and John Jenq, "Performance

Comparisons of Private AI Chatbot and Public AI Chatbot",

Proceedings World Conference on Smart Trends in

Systems, Security and Sustainability (WorldS4) July 2024

[15] Chroma Embeddings, retrieved Aug. 7, 2024,

https://docs.trychroma.com/guides/embeddings

[16] ChromaDB distance functions, retrieved Aug. 8, 2024,

https://cookbook.chromadb.dev/core/concepts/#embedding

-function

Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2024)

71

https://arxiv.org/pdf/2005.11401
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/#:~:text=Patrick%20Lewis,%20lead%20author
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/#:~:text=Patrick%20Lewis,%20lead%20author

	SA816WK

