Logo IIIS


International Institute of
Informatics and Systemics
2024 Summer Conferences Proceedings




Aurel_AI: Automating an Institutional Help Desk Using an LLM Chatbot
Diego Ordóñez-Camacho, Rafael Melgarejo-Heredia, Mohsen Abbasi, Lucía González-Solis
Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2024, pp. 81-84 (2024); https://doi.org/10.54808/WMSCI2024.01.81
The 28th World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2024
Virtual Conference
September 10 - 13, 2024


Proceedings of WMSCI 2024
ISSN: 2771-0947 (Print)
ISBN (Volume): 978-1-950492-79-4 (Print)

Authors Information | Citation | Full Text |

Diego Ordóñez-Camacho
Facultad Internacional de Innovación PUCE-Icam, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

Rafael Melgarejo-Heredia
Facultad Internacional de Innovación PUCE-Icam, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

Mohsen Abbasi
Facultad Internacional de Innovación PUCE-Icam, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

Lucía González-Solis
Facultad Internacional de Innovación PUCE-Icam, Pontificia Universidad Católica del Ecuador, Quito, Ecuador


Cite this paper as:
Ordóñez-Camacho, D., Melgarejo-Heredia, R., Abbasi, M., González-Solis, L. (2024). Aurel_AI: Automating an Institutional Help Desk Using an LLM Chatbot. In N. Callaos, E. Gaile-Sarkane, N. Lace, B. Sánchez, M. Savoie (Eds.), Proceedings of the 28th World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2024, pp. 81-84. International Institute of Informatics and Cybernetics. https://doi.org/10.54808/WMSCI2024.01.81
DOI: 10.54808/WMSCI2024.01.81
ISBN: 978-1-950492-79-4 (Print)
ISSN: 2771-0947 (Print)
Copyright: © International Institute of Informatics and Systemics 2024
Publisher: International Institute of Informatics and Cybernetics

Abstract
The Aurel_AI research project focuses on creating a virtual help desk for universities, delivering accurate information about academic programs, regulations, processes, and personnel to both internal and external clients. Traditional call centers often grapple with outdated data, limited knowledge, and high staff turnover, leading to inaccurate responses and long wait times. Generative AI models, particularly Large Language Models (LLMs), offer a promising solution for automated help desks. These models can comprehend poorly structured queries and generate appropriate answers. However, they may encounter “hallucinations” due to insufficient training data. Ensuring accurate and comprehensive information involves specific data collection, validation, and updating methodologies. Techniques like Fine-Tuning and Retrieval-Augmented Generation (RAG) are essential for specific use cases. While both methods have pros and cons, balancing cost-effective infrastructure is crucial for a precise, flexible, and user-friendly system.
Full Text



contact-us  
  Postal Address:
  13750 West Colonial Dr, Suite 350-408
  Winter Garden, Florida 34787, USA
  All rights reserved.
  © 2025 International Institute
   of Informatics and Systemics