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ABSTRACT 
 
Selection of service providers in supply chain is a critical 
decision that affects future performance of the chain. In 
practice, there are several factors to be considered in selection 
of proper service providers such as quality of transport, price, 
trustworthiness, and lead time. One of the main factors in 
selection of service providers is the time. In this paper, we 
investigate the effect of statistical distribution of lead time on 
supply chain performance. First step of this study provides an 
insight into the effect of lead time statistical characteristics on 
supply chain. The next step, comparing two popular statistical 
distributions of lead time (uniform and normal distributions), 
presents some guidelines in selection of service providers. 
 
Keywords: Supply chain management; Lead time; statistical 
distribution; performance; simulation; polynomial regression 
analysis 
 
 

1. INTRODUCTION 
 
Lead time (LT) is a very important factor in any supply chain 
(SC), being inseparable from SC. It usually has variations which 
lead to inconvenience of supply chain partners. Globalization 
leads to increase of physical distance of supply chain partners; 
which in turn, increases transportation lag. LT can be split into 
two parts: physical delays [1] and information delays [2]. 
Physical LT, itself, is composed of separate subparts that are 
affected by two main factors: performance of supply chain 
partner and environment uncertainties. For example, production 
LT can be categorized as physical LT because it directly delays 
physical material flow; furthermore, it is impressed by 
efficiency of supplier in rapid production. Efficiency in storage 
and retrieval of goods is another example of physical delays in 
supply chains, too. Transportation LT is a main part of physical 
LT that is affected by both performance of transportation 
service provider and environment uncertainty and, hence, 
causes probabilistic lead time. 
Transportation LT is a significant part of total LT. On the other 
hand, transportation LT can be unstable because of environment 
uncertainty and complexity, especially in global businesses. 
Third party carriers have responsibility of good transition in 
supply chain. In the theory of supply chain, service providers 
are considered as an internal part of the chain. However, in 

practice, shipment services are sometimes outsourced to 
external carriers. Service provider selection is one of the 
strategic decisions in supply chain that can affect overall chain 
performance. Selecting transportation service provider is made 
based on several criteria, one of the main ones being time. 
Average of shipment time and also reliability of shipment time 
are two sensitive parameters for managers.  
The aim of this study is to provide an insight into the 
relationship between SC performance and statistical features of 
the LT. A supply chain including four stages is simulated in two 
different conditions, one with uniform distribution of LT and 
the other with normal distribution. In each case, the supply 
chain is simulated for various combinations of LT mean and 
variance. Some SC performance measures are calculated for 
each LT distribution, and then are compared with each other. 
Time is one of the main parameters in transportation because it 
actively contributes to total lead time and increases both mean 
and variance of total lead time. Thus, one of the main 
applications of this study can be in the proper selection of 
carrier based on time factors. 
In many researches, supply chain with uncertain lead time has 
been considered [3,4,5]. But these researches have only 
modeled supply chain in a specific situation and have not 
investigated the effects of lead time on supply chain 
performance; hence, they could not help the supply chain 
managers in deciding upon proper carrier selection. In this 
study, effect of lead time on supply chain performance has been 
evaluated by modeling the supply chain in various situations 
(i.e., mean, variance and distribution of lead time). Main 
contribution of this paper is in considering statistical 
distribution of lead times and its effect on supply chain 
performance measures. Consideration of statistical distribution 
of lead times are interesting for two reasons: (1) statistical 
distribution of each variable has advantageous information 
about the variable (2) extraction of statistical distribution of 
each carrier’s lead time according to the historical data is 
possible and hence this study is feasible in practice.  
The paper is organized as follows. Section 2 provides a brief 
review on LT-related researches. In section 3, research 
methodology is described. Results of simulation and regression 
analysis are drawn in section 4. Finally, in the section 5, 
discussion and future studies are described.    
  
 



2. RELATED LITERATURE 
 
Lead time is a critical factor that affects supply chain 
performance. Researches in the area of supply chain modeling 
and decision making have usually considered lead time. 
However, in some researches, deterministic lead times have 
been considered while in more realistic researches, lead times 
are allowed to have some degree of uncertainty. Lead time 
affects inventory system parameters; e.g., in order 
quantity/order point system, both order quantity and order point 
are affected by two main parameters, one of them being 
received order and the other one being replenishment lead time. 
Furthermore, lead time variation will disturb coordination 
through the supply chain [6]. 
Researches on transportation mode selection have a close 
relation with this research. Selecting transportation mode has a 
direct effect on transportation lead time. Selection between two 
alternative transportation modes such that difference between 
their shipment times is equal to one period has been 
investigated [7]. That model has been developed such that 
difference between lead times could be any positive integer [8]. 
In both these mentioned models, only longer lead time has been 
compared to shorter lead time and uncertainty of lead time has 
not been considered; but in a real world, lead times are 
probabilistic and hence investigating changes on statistics of 
lead time such as mean and variance and -in a broader view- 
lead time statistical distribution will be much informative.  
Some researches have discussed the existence of dual-sourced 
supply chains, with each source having individual transportation 
characteristics. Source selection in such researches is mainly 
based on trade-off between extra cost of rapid shipment and 
profitability of using such rapid shipment in reduction of safety 
stock and reorder point [9]. Adding product availability level in 
such models makes them close to the customer relationship 
management (CRM) concepts [10]. Nevertheless, considering 
performance measures of supply chain such as order variance, 
average of batch size, and stock-outs, which have an important 
role in such decision making, is not considered in the above 
mentioned studies.  
In a new research [10], it has been shown that using slower 
transportation modes that increase lead time is economic for 
low-value items. Modeling a dual-sourced system (with one 
source being fast and another being slow) in the above 
mentioned study, it is shown that saving from lower safety stock 
level caused by utilizing the fast source is not always more than 
extra costs paid for using fast source. Also, portion of each 
placed order assigned to each transportation mode has been 
determined; thus, they have assumed that only a part of orders 
could be accelerated by spending extra cost.  
To the best of our knowledge, there are many researches 
concerning transportation mode, supplier selection based on 
delivery factors, and carrier assessment that try to find optimal 
model in making decisions but none of them have answered 
questions such as: “Is there a specific statistical distribution of 
time for carrier services which is preferable to another 
distribution from certain points of view?” or particularly “is 
uniform distribution of shipment time preferable to normal 
distribution or vice versa, given that other conditions such as LT 
mean or variance are identical?”. In this study, effect of lead 
time distribution on supply chain performance measures 
consisting of order sizes’ average, order variance, holding 
inventory, and of stock-out size’s average is evaluated by 
simulation and regression analysis. Regression analysis 

provides insight into the differences of theses two LT 
distributions in affecting supply chain performance. 
 

3. RESEARCH METHODOLOGY 
 
In this study, in the first step, a supply chain consisting of four 
stages is simulated under various conditions. In one simulation 
model, we assume that lead times are probabilistic and come 
from normal distribution while in another simulation model it is 
assumed that lead time come from uniform distribution. In these 
two different conditions, performance measures of supply chain 
for various combinations of LT mean and variance are 
estimated. In the second step, comprehensive regression 
analysis is done to discriminate differences between the two 
conditions in changing supply chain performance. 
 
3.1. Supply chain model and simulation parameters 
Investigated supply chain is a serial supply chain with four 
stages. In this model, each partner of the chain is customer of its 
upstream partner and supplier of its downstream. In each stage, 
only one actor exists. To measure the effect of lead time 
distribution on supply chain without any other intervener 
variables, we fixed other parameters and assumed that (1) end 
customer demand is fixed (2) ordering cost is negligible and 
therefore the effect of batch sizing arisen from ordering cost 
will not exist (3) data sharing mechanism enable supply chain 
partners to access the end customer demand information and 
therefore deviations caused by inaccurate forecasts are removed. 
In this model, the supply chain partners face a competitive 
market; therefore, if customer demand is not satisfied 
immediately, the order will be lost and customer will move to 
our competitors.    
The supply chain partners’ ordering strategy under theses 
assumption is simple. The only variable in ordering decision is 
lead time. Supply chain partners place their order based on 
forecasted lead time such that their orders cover lead time 
interval. Under this condition, supply chain in various 
combinations of mean and variance for two different statistical 
distributions of lead time are simulated. Supply chain 
performance measures consisting of mean order size, order 
variance, holding inventory per period, and stock-out size per 
period are calculated.  
Supply chain actors in each simulation run work for 5000 
periods. Lead times are generated randomly from each of 
uniform and normal distributions. All integers between 20 and 
50 are tested for LT mean; and for each mean value, variance is 
varied from 0.5 to 20 (with interval 0.5); thus, for each LT 
mean, 40 various lead time variances are tested. For each 
combination of LT mean and variance, supply chain simulation 
is iterated 10 times and average of parameters are calculated. 
All these experiments are repeated for both uniform and normal 
LT distribution. Totally, supply chain is simulated 24000 times.  
Graphical results of both uniform and normal LT distribution 
can be drawn. Graphical representation of results shows 
variations of SC performance measures against LT mean and 
variance. By using graphical representation of simulation 
results, comparison between two distributions of lead time will 
be possible but it is not sufficient. Regression analysis is used 
based on simulation results as input data, for measuring impact 
of each variable on supply chain performance and detecting 
difference of the two statistical LT distributions on supply chain 
performance quantitatively. In the next section, graphical 
diagrams, results of simulation, and regression analysis are 
described.  



4. RESULTS 
 
From four performance measures that are considered in this 
study, two measures (mean order size and order variance) are 
concerned about ordering system and the rest (holding 
inventory and stock-out size) are concerned about inventory 
system. Simulation shows that each of these measures vary 
according to changes of LT mean and variance. By 
investigating these variations and comparing difference between 
performance measures in two different LT distributions, effect 
of lead time distribution can be viewed in addition to creating 
insight into the quality of changes in performance indices.  
Figure 1 and 2 show performance measures’ trends for various 
combinations of LT mean and variance in uniform and normal 
distributions respectively. 
 Diagram (a) in both figures 1 and 2, are concerned about the 
trend of mean order size for various combinations of LT mean 
and variance. Both diagrams (1-a) and (2-a) show the 
logarithmic increase of mean order size against LT variance 
increase. According to theses diagrams, it seems that increasing 
LT mean at constant variance does not affect mean order size. 
Diagrams (1-B) and (2-B) show linear increase of order 
variance arising from LT variance increase in both LT 

distributions but it seems that increasing LT mean at constant 
variance has a little effect on order variance. Both diagrams (1-
C) and (2-C) describe positive relation between holding 
inventory and both LT mean and variance; thus, maximum 
amount of holding inventory appear when both LT mean and 
variance have their maximum values. According to diagrams (1-
D) and (2-D), positive relation between mean stock-out size and 
LT variance can be identified and reverse relation between 
mean stock-out size and LT mean is detected; thus, mean stock-
out is maximized when LT mean is as small as possible and LT 
variance stands in its highest value. In the next section, more 
accurate and quantitative inference has been made using 
regression analysis. We use diagrams 1 and 2, to distinguish 
regression type. Based on these diagrams, polynomial 
regression seems to be appropriate. Furthermore, based on 
polynomial regression, it is tested whether two distributions 
(uniform and normal) are different in affecting supply chain 
performance or not? 
 
4.1. Regression analysis 
Regression analysis is a statistical methodology which uses the 
relationship between variables to predict value of a dependent 
variable by changing the independent variables [11]. In multiple 
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Figure 1. Performance measures’ 
trends for various combinations 
of LT mean and variance in 
uniform distribution: (A) mean 
order size; (B) order variance; 
(C) holding inventory; (D) stock-
outs 
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Figure 2. Performance measures’ 
trends for various combinations 
of LT mean and variance in 
normal distribution: (A) mean 
order size; (B) order variance; 
(C) holding inventory; (D) stock-
outs 



regression analysis, one response variable and several 
independent variables exist. One of the most applied models of 
multiple regression models is polynomial regression. Generally, 
polynomial regression has been used in two basic cases [11]: (1) 
when response function is a polynomial function, and (2) when 
response function is unknown or complex but a polynomial 
function is an appropriate estimate of it. In this paper, according 
to figures 1 and 2, one can conclude that response function 
(concerned about each performance measure) can be estimated 
based on a polynomial function and therefore polynomial 
regression is used.  
Our regression analysis has two main stages: (1) investigating 
the effects of LT mean and variance on each performance 
measure, both in uniform LT distribution and normal LT 
distribution, and (2) investigating the difference between two 
LT distributions in affecting each performance measure.  
In the first stage, a second order polynomial regression 
(including interaction effects between independent variables) is 
used for investigating the effects of LT mean and variance on 
each SC performance measure. The general form of regression 
model is: 
 

iiiiiiii xxxxxxY εββββββ ++++++= 2112
2
222

2
11122110

   (1) 

 

Where xi1 and xi2 are predictor variables (LT mean and variance 
respectively) and Yi is response variable that is one of the SC 
performance measures. Subscript i stands for ith observation. 
Since four measures of SC performance are considered in this 
study, four regression models must be created for each of LT 
distributions (one performance measure has the role of response 
variable in each one). Table 1 shows the results of fitting 
regression models on simulation data after partial F-test.. 
As shown in table 1, each of eight regression models has five 
predictor variables including lead time mean (LTM), lead time 
variance (LTV), second order of lead time mean (LTM2), 
second order of lead time variance (LTV2), interaction effect 
between lead time mean and lead time variance (LTM*LTV). 
The five mentioned variables are correlated; thus, the model is 
run using centered predictor variables in order to reduce 
multicolinearity between independent variables [11] and 
coefficients are finally transformed to the original predictor 
variables after calculating regression parameters. 
The exit of each predictor variable using partial F-test statistic 
at confidence level 95% is tested. If the exit of one predictor 
variable from each specific regression model is confirmed by 
partial F-test, then it is concluded that this independent variable 
is not a predictor variable in the formation of response function; 
in other words, effect of this independent variable on response 
variable is negligible. For example, when lead time comes from 
normal distribution, only LTM, LTV, and LTV2 affect order 
variance but when lead time comes from uniform distribution, 
(LTM*LTV) affects order variance as well (see table 1).  
Comparison of the two LT distributions is the second stage of 
our regression analysis and is presented in the following 
sections. 
 

4.1.1.Mean order size regression models comparison: 
According to regression equation (see table 1) and also figure 1 
and 2, relation between mean order size and lead time variance 
is much greater than relation between mean order size and lead 
time mean. Comparison of the two LT distributions is done 
using the same methodology for each of the four response 
measures. Below, regression model is used for the purpose of 

assessment of the difference between two lead time 
distributions: 
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Thus, when lead times come from uniform distribution, the 
regression model will be: 
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And when lead times come from normal distribution, the 
regression model will be: 
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Table 1. Coefficients of fitted regression models on simulation 

data for both normal and uniform LT distribution 
 

Normal Distribution 
  

R2(%)  LTM*
LTV  LTV2  LTM2  LTV  LTM  1  

Response 
Variable  

99.3  - -0.112 - 5.245 -0.0150 54.1 Order  
Mean  

99.8  -  -5.038  -  418.64  -0.9214  760.7  Order  
Variance  

99.2  0.040  -0.201  -0.012  8.223  1.4353  25.9  Holding  
Inventory  

96.7  -0.002  -0.017  0.0019  0.700  -0.2137  9.02  Stock out  
 

Uniform  Distribution  
R2(%)  

 

LTM*
LTV  

 
LTV2  

 
LTM2  

 
LTV  

 
LTM  

 
1  

Response 
 Variable  

99.3  - -0.117 - 5.363 -0.0187 54.7 Order 
 Mean  

99.8  -0.114 -5.461 - 416.71 -0.2423 745.3 Order  
Variance  

99.2  0.042 -0.216 -0.014 8.636 1.5606 23.6 Holding  
Inventory  

96.4  -0.002 -0.016 0.0021 0.653 -0.2268 9.38 Stock out  
 

To assess whether the type of LT distribution affects response 
variable or not, two regression equations (3) and (4) must be 
compare with each other. If two regression models have a 
significant difference, then one can conclude that mean order 
size when lead times have normal distribution are statistically 
different from mean order size when lead times have uniform 
distribution. Hypothesis testing for such investigation is: 
 

⎪
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                                (5) 

When H0 has not been accepted then at least one coefficient is 
not equal to zero and therefore two models will be different. In 
other words, by not acceptance of H0, two lead time 



distributions will be different in affecting performance 
measures.  
For testing the hypothesis (5) using partial F-test we have: 
 

ModelFull

ModelFullModelduced

dfModelFullSSE
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F
/)(
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                                  (6) 

In equation (6), reduced model refers to model (2) under H0 
condition, while Full model is complete regression model of 
equation (2). Total number of observations is equal to 2400 thus 
full model’s degree of freedom is equal to 2400-12=2388 and 
reduced model’s degree of freedom is equal to 2400-
12+6=2394.   
Since calculated F-statistic is much greater than F-statistic 
(F(0.95,6, ∞)=2.10) thus H0 is not accepted and therefore two 
models are statistically different. Furthermore, more detailed 
experiments are done to distinguish the differences of two 
models. In each new experiment, each of X variables’ 
coefficients (i.e. 1197531 ,,,,, ββββββ and ) in general model 
(2) is tested one by one. Table 2 (see appendix) shows 
calculated regression coefficients and calculated F*. 
As shown in table 2, more detailed experiments on each 
coefficient 1197531 ,,,,, ββββββ and  is performed. At 
confidence level %95=α , two coefficients 1β  and 

9β  has a F* 
greater than F(0.95,1, , ∞)=3.84 thus the two variables X and 
LTV2.X remain in the model. According to the remaining two 
variables in the model, difference of normal and uniform LT 
distribution on affecting mean order size is significant. 
According to negative sign of 1β , it is clear that offset from 
origin in regression model with normal LT distribution is lower 
in respect to the regression model with uniform LT distribution. 
But mean order size grows more rapidly in normal LT 
distribution than in uniform LT distribution (according to 
positive coefficient 9β ). 
 

4.1.2. Order variance regression models comparison: 
To test the existence of difference in effects of two lead time 
distributions on order variance, a methodology like one used in 
section 4-1-1 is utilized. Calculated F-statistic (F*=345.08) is 
much greater than (F(0.95,6, ∞)=2.10) thus effects of two lead 
time distribution on order variance is different. More detailed 
partial F-tests on each coefficient shows that, in confidence 
level %95=α , three coefficients 951 ,, βββ and  has a F* 
greater than F(0.95,1, ∞)=3.84 thus the two variables X,LTV.X 
and LTV2.X remain in the model. According to remaining three 
variables in the model, difference of normal and uniform LT 
distributions on affecting order variance is significant. Table 3 
(see appendix) shows calculated regression coefficients and 
calculated F*. 
From table 3, one can conclude that difference of order variance 
between two investigated LT distributions is caused by lead 
time variance and not for the reason of lead time mean. 
 

4.1.3. Holding inventory regression models 
comparison: To test the difference between two LT 
distributions from holding inventory point of view, the same 
regression methodology like one used in section 4-1-1 is used. 
Calculated F*=117.45 is much greater than critical value 
(F(0.95,6, ∞)=2.10); thus, at %95=α , two LT distributions 
are different in respect to the effect on holding inventory. More 

detailed tests show that 9531 ,,, ββββ and at confidence level 
95% are non-zero and therefore variables X, LTM.X, LTV.X, and 
LTV2.X remain in the model; which causes the difference of 
normal and uniform LT distributions in affecting the holding 
inventory. Table 4 (see appendix) shows the regression 
coefficients and relevant F-statistic values. 
As shown in table 4, sign of both 3β  and 5β are negative; thus, 
by keeping theses two variable in the model, by increasing LT 
mean and variance in the normal distribution, average of 
holding inventory increases less than that of uniform LT 
distribution. 
 

4.1.4. Stock-out size regression models comparison: 
To assess the difference between two distributions of lead time 
in respect to stock-out size, the F-statistic of hypothesis (5) is 
calculated. Since F*=97.475 is greater than (F(0.95,6, 
∞)=2.10), two LT distributions are different in affecting stock-
out size. More detailed tests show that at %95=α , both 

1β and 5β  are non-zero. Table 5 (see appendix) shows the 
regression coefficients and relevant F-statistic values. 
According to table 5 (see appendix), sign of 5β  (coefficient of 
LTV.X) is positive; thus, by increasing lead time variance, 
increase of stock-outs in normal LT distribution is greater than 
that of uniform LT distribution.  
 

5. DISCUSSION 
 
Lead time is one of the main factors that affect performance of 
each supply chain partner. By effective management of lead 
time, it is possible to reduce its harmful effects. In this study, at 
first stage, effects of lead time mean and variance on supply 
chain performance has been identified by simulating the supply 
chain. Results of this stage have been summarized as follows: 

- Both mean order size and order variance are affected 
by lead time variance more than by lead time mean.  

- Average of holding inventory has positive relation 
with both LT mean and variance. 

- Investigation about stock-out size shows that by 
increasing lead time mean, stock-outs decrease but 
lead time variance and stock-outs have a direct 
relation.   

Also, by using a methodology based on polynomial regression 
analysis, difference between normal and uniform LT 
distributions is assessed based on the change they cause in SC 
performance measures. Main findings of this stage shows that 
lead time with normal distribution is different from lead time 
with uniform distribution, as the distribution type affects all 
performance measures including mean order size, order 
variance, holding inventory, and stock-out amounts.  
Finally, regarding the business conditions, relative importance 
of each performance measure, and desired behavior of each 
performance measure, managers can decide about carrier 
selection based on carrier characteristics about transportation or 
production lead time; or one can decide about investment on 
changing the lead time characteristics. In this paper, only the 
effects of lead time are considered. These effects can be 
changed if interaction with other variables such as customer 
demand, data sharing level and so on, has been added to the 
model; it can be viewed as future study.  
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Appendix 
Calculated regression coefficients and relevant F-statistic values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Regression coefficients and F-statistic values (response variable=stock-outs size) 
 1 X LTM LTM.X LTV LTV.X LTM^2 LTM^2.X LTV^2 LTV^2.X LTM*LTV LTM*

LTV.X 
 

Coefficient 
 

7.9652 0.299 -0.10 0.0025 0.215 0.0294 0.0021 -0.00014 -0.0165 -0.00072 -0.0028 -0.00006 

 
F* statistic 

 
- 149.578 - 2.7512 - 169.23 - 0.5329 - 2.6812 - 0.0426 

 

Overall X coefficients F*= 97.47508088 
 

Table 4. Regression coefficients and F-statistic values (response variable=Holding inventory) 
 1 X LTM LTM.X LTV LTV.X LTM^2 LTM^2.X LTV^2 LTV^2.X LTM*LTV LTM*

LTV.X 
 

Coefficient 
 

142.43 -3.7985 0.985 -0.043 5.721 -0.183 -0.0143 0.0014 -0.2162 0.0144 0.0427 -0.0018 

 
F* statistic 

 
- 246.235 - 8.2905 - 67.401 - 0.5711 - 11.0305 - 0.5473 

 

Overall X coefficients F*= 117.4517657 
 
 

Table 3. Regression coefficients and F-statistic values (response variable=order variance) 
 1 X LTM LTM.X LTV LTV.X LTM^2 LTM^2.X LTV^2 LTV^2.X LTM*LTV LTM*

LTV.X 
 

Coefficient 
 

4389.7 99.3192 -1.41 0.4936 300.6 14.656 0.0391 -0.0294 -5.4614 0.4226 -0.1144 0.0574 

 
F* statistic 

 
- 295.542 - 1.9202 - 751.79 - 0.4101 - 16.6321 - 0.8661 

 

Overall X coefficients F*= 345.0856348 
 

Table 2. Regression coefficients and F-statistic values (response variable=mean order size) 
 1 X LTM LTM.X LTV LTV.X LTM^2 LTM^2.X LTV^2 LTV^2.X LTM*LTV LTM*

LTV.X 
 

Coefficient 
 

96.744 -1.190 -0.018 0.003 2.960 -0.020 0.0002 -0.00008 -0.117 0.0047 -0.0014 0.0004 

 
F* statistic 

 
- 109.572 - 0.2769 - 3.633 - 0.00718 - 5.4244 - 0.1582 

 

Overall X coefficients F*= 50.30298267 
 


