
Comparison of Nonlinear Optimization Methods on a Multinomial
Logit-Model in R

Hannes PUCHER
Institute for Information Business, Vienna University of Economics and BA

Vienna, 1090, Austira

and

Volker STIX (corresponding author)
Institute for Information Business, Vienna University of Economics and BA

Augasse 2-6
Vienna, 1090, Austria

volker.stix@wu-wien.ac.at

ABSTRACT
In this article we analyze several optimization methods of a
real-life nonlinear optimization problem in R. The
optimization problem results from fitting a multinomial
logit-model. This is part of the so called Brand Simulator, a
tool to forecast and simulate possible marketing mixes. In
the existing optimization procedure, simple derivation-free
techniques are used. The objective of this paper is to apply
several promising optimization techniques in order to
improve optimization with respect to time and quality. Hence
a testbed was implemented in R. Results show that the
proposed techniques outperform existing optimization
procedures in most of the cases.

Keywords: marketing-mix analysis, Multinomial logit-
model, logistic regression, optimization, quasi-Newton
methods, maximum-likelihood estimator.

1. INTRODUCTION
The “Brand Simulator” (BS) is a software tool for
optimization and simulation. The major purpose of the BS is
the simulation and analysis of the impact of different
marketing-mix concepts on the behavior of households in
Germany in the fast-moving-consumer-goods market.
Whereas the BS consists of several optimization steps and
modules, we focus in this paper on the optimization of a sub-
model denoted as brand model (BM). The BM is based on a
multinomial logit-model (MNL). In the BS the involved
parameters are estimated by linear-least square estimation
through data drawn from a consumer panel. Least-square
estimation of a MNL results in a nonlinear optimization
problem, which must be solved by nonlinear optimization
techniques. In addition, several parameters of the model are
subject to linear constraints in order to meet marketing-
specific needs. In the BS the optimization is done using
derivation-free techniques such as Nelder-Mead technique
and Golden Section Search [1] so far. Constraints are
incorporated by a linear penalty function.
In order to improve existing optimization procedures, the
following alternative methods were applied to the problem:
derivation-based quasi-Newton methods, a genetic
algorithm, simulated annealing, and a combination of a
quasi-Newton method with the genetic algorithm. In doing
so, parameters are simultaneously optimized instead of
separate optimization. Moreover, alternative ways of

incorporating the linear constraints such as quadratic penalty
function, barrier function and box-constraints are compared.
Additionally, maximum-likelihood estimation is applied.
To verify the introduced experiments, the optimization
problem was implemented in R. In view of the numerous
experiments to be solved, the problem was embedded in a
testbed. Whereas the testbed was implemented in pure R
code, the core modules of the objective function computation
are mainly implemented in C subroutines. The quality of
optimization and simulation is evaluated by several
goodness-of-fit measures.
In the remainder of this article we will present the
optimization problem in short. We introduce the special
features of the BM, input data, optimization procedure, and
how optimization quality is measured. In Section 3, we
briefly describe the methods used for optimization. Section 4
presents experimental settings and implementation of the
testbed and in Section 5 we discuss the results derived from
experiments.

2. OPTIMIZATION PROBLEM
Features of the brand model
The BM represents a purchase situation in which an
individual faces a set of alternatives. The specification of the
BM is based on an MNL. The MNL belongs to the discrete
choice models in which the set of two or more alternatives is
discrete and finite [1]. In the model, the explained variable is
the set of brands and the explanatory variables are
marketing-mix variables such as price or promotion. The
parameters of the model describe the impact of the
explanatory variables on the explained variable. From a
technical point of view, the BM estimates the purchase
probability of each brand i within a set C of alternative j
subject to explanatory variables X and its parameters  .
The MNL guarantees that probabilities for each brand within
a set of alternatives add up to 1. The purchase probability of
a brand is given by

P i=
expi X i

∑
j∈C

exp j X j
. (1)

Compared to a traditional MNL, the BM differs in the
structure of alternatives and the parameters. Due to panel
properties, a set of alternatives in a certain purchase situation
cannot be observed directly. Therefore, alternatives are
identified and calculated on the basis of information

extracted from employed data [15]. The sets of alternatives
in a certain purchase situation may vary in size, explanatory
variables and, consequently, in the number of parameters. In
the BM, the various sets of alternatives are denoted as
contentions. The number of parameters for estimation
depends mainly on the number of brands involved in the
analyzed data set C .

Input data
Data for this study was provided by the GfK Group drawn
from a consumer panel maintained by the company. The
panel records purchase acts of households on a weekly basis.
A purchase act contains information such as time, place,
subject, or quantity of purchase. Received data was
reassessed and edited by means of statistical principles.
From this data, sets are extracted related to specific
commodity groups containing different brands. For this
work, a large and a small data set are used. The large data set
includes 445,896 purchase data records, whereas the small
data set includes 31,041 records.

Original optimization procedure
Using the least-square method for optimizing the
parameters of the BM, the problem is given as

min


∑
i∈C

 y i−P i
2

subject to
c l0 ,

(2)

where c l denotes l linear constraints restricting the
parameters, y i refers to the observed purchase acts and can
only take the values 0 or 1, whereas P i takes values between
0 and 1. Parameters are optimized separately. Hence
optimization is organized in five runs [15]. Each run
optimizes a different set of parameters. For multidimensional
optimization, a Nelder-Mead technique, also called
Downhill-Simplex (DS), is adopted and a Golden-Section
Search (GS) is applied to the one-dimensional case [1].
Separate optimization is used because the Nelder-Mead
technique cannot manage the optimization of simultaneous
variables. The optimization is terminated by stopping criteria
such as a maximum number of iterations or a drop below a
minimum change in the objective value. Linear constraints
of the problem are incorporated by a linear penalty function.

Optimization quality
Optimization quality is measured by a goodness-of-fit
measure developed by Estrella [3]. Its purpose is to provide a
goodness-of-fit for discrete choice models comparable to the
R² calculated in traditional regression analysis. Table 1
shows the performance of the existing optimization
procedure subject to employed data sets. Due to the small
data, optimization took about 4 hours resulting in an
Estrella's R² of 0.034. Considering the small data,
optimization took 9 minutes resulting in an Estrella's R² of
0.062. In both cases optimization quality is relatively poor.

Table 1. Optimization of BM in the Brand Simulator

Characteristics Small data set Large data set
Number of parameters 71 165
Number of constraints 58 134
Computation time in
minutes

9 234

Starting objective
value

7,770.894 142,098.827

Objective value after
optimization

5,828.917 117,983.932

Estrella's R² 0.062 0.034

3. PROPOSED METHODS

In order to improve optimization procedure, several
derivation-based methods and meta-heuristics are
implemented. This includes 5 quasi-Newton methods, a
version of a genetic algorithm, and a combination of the
genetic algorithm with a quasi-Newton method. In addition
to that, a Nelder-Mead technique [10] comparable to that of
the Brand Simulator is applied as a benchmark. In our
experiments, all parameters are optimized simultaneously.

Quasi-Newton methods
The set of quasi-Newton methods proposed for the
optimization problem includes three types of conjugate
gradient techniques (CG) [9], three implementations of the
Broyden-Fletcher-Goldfarb-Shannon procedure (BFGS)
[4,6,9], a limited BFGS with box-constraints (L-BFGS-B)
[12], the Levenberg-Marquardt (LEV-MAR) [8] and the
Brandon-Hall-Hall-Hausmann method (BHHH) [5]. Among
the CG, a Fletcher-Reeves version (CG1), a Polak-Ribière
version (CG2) and a Hestenes-Stiefel version (CG3) was
applied. All techniques are available in the standard
distribution of R or in additional packages [14]. All proposed
methods use

k1=kk pk , (3)
where subscript k denotes the k-th iteration, pk defines the
search direction and k defines the step length. The proposed
methods differ in varied computations of the search direction
and step length.

First-order derivations (gradient) and the various
approximation of second-order derivations are calculated by
finite differentiation [13]. The calculation of derivations lead
to further computation time at each iteration, the number of
iterations, however, for achieving an acceptable optimum is
expected to decrease.

Genetic algorithm
Instead of calculate derivations, a genetic algorithm (GA)
uses special search operators to compute new trial solutions.
The GA we propose for this problem is based on the
GENOUD program [7]. It is highly scalable and incorporates
nine search operators. Those include four crossover
operators, four mutation operators and one operator for
cloning. Additionally, the GA implements an elite strategy to
improve convergence property [11]. Moreover, the GA offers
a combination with quasi-Newton methods. In this study, the
GA was combined with the BFGS version of the PORT
routines which enables box-constraints (GA-PORT). This
feature exists mainly for improving local optimization
performance as GA are known to perform inefficiently near
an optimum [11].

Simulated annealing
We implemented simulated annealing (SA) for this problem
as described in [2]. There the SA method uses a logarithm
temperature schedule dependent on the current iteration, a
starting temperature and the maximum number of function
evaluations. Starting temperature and maximum number of
evaluations can be set by the user.

Maximum-likelihood estimation
In addition to the least-square method for optimization, the
maximum-likelihood estimation (MLE) is used. In general,
MLE is considered to be a standard approach for estimating
a logit-model [15]. The MLE objective function is given by

max

∑
i∈M

ln P i
subject to
c l0 ,

(4)

where the set M covers all observations where y i=1 .

Constraints handling procedures
In addition to the linear penalty function, a quadratic penalty
function and a logarithm barrier function are evaluated.
Compared to the linear penalty function, an individual
penalization is pursued as each constraint violation is
penalized individually. Penalty or barrier methods augment
the objective function and hence transform a constrained
problem to an unconstrained problem. Penalty procedures
count among dual methods, whereas barrier functions are
related to inter-point procedures. Considering the penalty as
well as the barrier procedure, outer iterations are necessary
with respect to a declining penalty parameter. Theoretically,
a decline in the penalty parameter forces the optimizers to
become feasible [13]. There is, however, no guarantee that a
final solution achieves feasibility. For comparison, the
simpler box-constraints feature available in the GA, BFGS
and L-BFGS-B are used as well. In contrast to penalty and
barrier procedures, box-constraints are integrated in the
method's algorithm and are counted among primal methods
[13]. The adjusted algorithm guarantees feasibility during the
whole optimization and no outer iterations are required.

4. EXPERIMENTAL SETTINGS
AND IMPLEMENTATION

The challenge of applying different techniques to a problem
is to make the performance of the techniques comparable. In
doing so, equivalent controlling parameters among the
techniques were identified and synchronized to enable
similar conditions. This includes stopping criteria with
respect to maximum iterations, to relative changes in
objective or gradient. Different types of techniques, however,
are accompanied by different controlling parameters. As a
consequence, those parameters were adjusted in such a way
that the optimization effort was comparable as exactly as
possible. Optimization time was measured in terms of
number of objective function evaluations. These values were
derived from several test runs.

As a result, the maximum number of iterations was set to
10 for all methods except for the LEVMAR, Nelder-Mead,
SA and GA. LEVMAR only allows the adjustment of a
maximum number of function evaluations per iteration. This
parameter was set to 1,000 in the event of outer iterations
and 1,700 without outer iterations. Similarly, maximum
iterations of Nelder-Mead and SA were limited to 10,400 in
the event of outer iterations and otherwise to 1,300.
Implementation-based parameters were set to default. Hence
it is assumed that in general all techniques perform best with
its default values. One Exception was found in the
LEVMAR algorithm. Here, test runs suggested to increase
the accuracy of finite differentiation to 1e-5 instead of 1e-3
(default).

For the implementation of the constraints, the type of
penalization of the quadratic penalty and logarithm barrier
procedure had to be adjusted. We decided to realize a strict
and a mild penalization. This was done by setting the starting
penalty parameter 0 to 1 (strict) and 2 (mild). The decline
 in the penalty parameter at each outer iteration was fixed

to 10% of the previous value. The maximum number of outer

iterations was set to 8 in order to keep the number of total
iterations low. For comparison, the linear penalty used in the
original Brand Simulator was implemented as a benchmark.
A summary of all configurations and their reference number
is given in Table 2.

Configurations 1-1, 1-2, 2-1, 2-2 and 3 were used with
CGs, BFGS, L-BFGS-B, LEVMAR, BHHH, as well as SA
procedures and the box-constraints were used with BFGS, L-
BFGS-B and the GA. For the latter, only the box constraints
method was deployed. In general, the proposed penalty and
barrier procedures are considered to be inefficient with GA,
especially in the event of many constraints. Thus it is
preferable to use primal methods [11].

Table 2. Configurations of constraints handling procedures

ID Procedure µ0 σ Maximum outer
iterations

1-1 quadratic penalty 1 0.1 8
1-2 quadratic penalty 2 0.1 8
2-1 logarithm barrier 1 0.1 8
2-2 logarithm barrier 2 0.1 8
3 linear penalty - - -
4 box-constraints - - -

Both the least-square and maximum-likelihood
procedures were applied to all settings. By its nature, the
LEVMAR could solely be used with the least-square
procedure. Similarly, the BHHH could only be used with the
MLE. The study is conducted in three phases. First, all
experiments are processed on basis of a small data set.
Second, the most promising methods in combination with
constrained handling procedures are applied to a large data
set to verify performance. In summary, 234 experiments (or
optimization runs) are conducted due to the small data set, 11
experiments on the basis of the large data set.

For implementation the software package R is chosen. This
is because it is freely available, it is easy and flexible to
implement the special features of the BM and the proposed
optimization techniques are available. The testbed
compounds several R functions. One of them is the main
function in which experiments can be set centrally. Central
settings prevent faulty input information.

Specified settings as well as automatically pre-calculated
information are passed as input to selected optimization
techniques. This ensures that input information is attuned to
each interface to ensure reliability and validation of the
results due to applied technique. After optimization, results
are processed and recorded in a table including information
about experiment settings, achieved least-square function
value, computation time recorded in minutes, Estrella's R²,
the efficiency measure and feasibility of solution.

The major challenge was to reduce computation time of
the objective function. Therefore, loops for allocating
parameters for the corresponding data sets and the
denominator of (1) were coded as C subroutines. In addition,
information about contentions structure, calculated prior, was
used to diminish the loop size and matrix operations were
abandoned in favor of vector operations, which are highly
efficient in R.

5. RESULTS

A first exploration of the results revealed that the barrier
function did not work well with finite differentiation.
Therefore, those results were excluded for further analysis.
So the number of results reduced from 234 to 158. To focus
on the best results, feasible results exceeding the average are

selected. Table 4 shows these results from small data set in
descending order with respect to Estrella's R², where “o.f.”
stands for “objective function”.

For comparison, we included the optimization result of
the original Brand Simulator (#29). The results indicate that
optimization in the original Brand Simulator was clearly
outperformed in quality and performance. The DS integrated
in R was inferior to quasi-Newton methods and meta-
heuristics. Among applied techniques, LEVMAR (#1 with
0.590260) and BHHH (#2 with 0.545580) performed best
while LEVMAR was far more efficient (ratio of 10.97469 to
5.18091). This outcome is not surprising, as both techniques
exploit the special structure of the objective function due to
least-square estimation and maximum-likelihood estimation
respectively. Furthermore, the combination of the GA and
the BFGS-PORT proved to be efficient (#3 with 0.435517)
and outperforms the respective methods GA (#16 with
0.378640) and the best BFGS-PORT (#9 with 0.396960).
The BFGS-PORT, however, was faster (ratio of 11.15226 to
7.04040). Considering time, the BFGS-PORT in combination
with NLS turned out to be the most efficient technique. The
achieved optimization quality of applied SA configurations
was below the average. One reason could be that penalty
function combined with SA prevent the SA to achieve better
optimization quality. Furthermore, the default values of the
SA may not be adequate for the considered optimization
problem.

Considering estimation methods, no clear evidence is
given whether the least-square or maximum-likelihood
estimation is more qualified. There is only a slight tendency
that maximum-likelihood lead to better results in average.

Table 3 shows the robustness of the constraints handling
configurations. As expected, the most robust configuration is
the box-constraint configuration. No infeasible solution has
been generated. Among the penalty functions, the linear
penalty function turned out to be more robust. The linear
penalty function, however, led to inferior optimization

quality. A milder penalization should be preferred to a
stricter penalization amongst quadratic penalty functions.

Table 3. Robustness of constraints handling procedures

Configuration feasible
optimizers

infeasible
optimizers

Sum

1-1 17 21 38
1-2 23 15 38
3 31 7 38
4 44 0 44
Sum 115 43 158

We found similar results using the large data set (see
Table 5). Again, LEVMAR (#1) outperformed all other
techniques (including results from the original Brand
Simulator). In addition, it turned out to be the most efficient
technique (ratio of 0.16817). The results on BHHH are not
available since BHHH was not able to manage the involved
large vectors. L-BFGS-B turned out to be competitive in
terms of optimization quality but suffers from relatively high
computation time. Sticking to computation time, most of the
tested techniques outperform the Brand Simulator with
respect to computational time. LEVMAR e.g. is 1.5 times
faster than the Brand Simulator. This is surprising, as
implementation in the Brand Simulator bases completely on
C sources and is therefore expected to be much faster,
especially due to storage management. The performance of
the Levenberg-Marquardt could be further enhanced by
using analytical derivations. This would reduce multiple
function evaluations at each iteration.

Considering the optimization program, the maximum-
likelihood optimization led to better results with respect to
the L-BFGS-B, BFGS-PORT and GA-PORT and confirmed
the tendency of the small data set. Again, the combination of
GA and BFGS-PORT performed well.

Table 4. Results from the small data set
o.f. technique constraints least-square value minutes R2 R2/time

1 nls levmar 1-2 5418.15738039334 5.37833 0.590260 10.97469
2 mle bhhh 1-2 5571.69891647763 10.53050 0.545580 5.18091
3 mle ga-port 4 5659.41900000000 6.18595 0.435517 7.04040
4 nls levmar 1-1 5599.98244185570 4.88083 0.432380 8.85883
5 mle lbfgsb 4 5670.46027991221 7.61433 0.431530 5.66733
6 mle lbfgsb 1-2 5757.33995396882 11.89933 0.418290 3.51527
7 nls lbfgsb 1-1 5745.67169594246 10.88433 0.415260 3.81523
8 mle cg3 1-1 5808.06856585466 6.93417 0.410200 5.91568
9 mle port 4 5687.64024771080 3.55950 0.396960 11.15226
10 mle lbfgsb 1-1 5790.85404069227 11.50100 0.393850 3.42449
11 mle ds 1-1 5790.27101869178 5.97900 0.390790 6.53611
12 nls lbfgsb 4 5685.20097477194 6.38767 0.390600 6.11489
13 nls port 4 5629.13152252270 3.22817 0.389690 12.07160
14 mle cg3 1-2 5835.35858095708 7.05167 0.385660 5.46900
15 mle bfgs 1-2 5792.71262403588 6.65750 0.378850 5.69052
16 mle ga 4 6003.44310000000 6.12500 0.378640 6.18123
17 nls cg1 1-2 5766.36808461207 5.72400 0.377810 6.60052
18 mle cg2 1-2 5792.99466547177 6.72183 0.377400 5.61460
19 nls cg2 1-1 5784.42395161786 5.93467 0.377160 6.35516
20 nls port 1-2 5774.24620164565 3.13133 0.376920 12.03709
21 nls cg1 1-1 5776.05192006425 5.84650 0.376610 6.44168
22 mle cg2 1-1 5798.36050816819 6.78650 0.376470 5.54733
23 nls cg2 1-2 5780.94833128411 5.88967 0.376130 6.38623
24 nls cg3 1-2 5779.91307155361 5.89733 0.376000 6.37571
25 mle cg1 1-1 5813.19163108785 6.58133 0.369300 5.61129
26 mle ds 3 5875.18662272825 5.92333 0.360470 6.08566
27 nls ds 1-1 5840.84537844609 5.05150 0.357580 7.07873
28 nls ds 1-2 5831.23310004912 5.04183 0.350280 6.94744
29 NLS DS+GS 3 5828.91720000000 9.00000 0.062410 0.69340

Table 5. Results from large data set

o.f. technique constraints least-square value minutes R2 R2/time
1 nls levmar 1-2 113800.015040000 159.67520 0.26850 0.16817
2 mle lbfgsb 4 116922.048554040 234.13267 0.21294 0.09095
3 mle port 4 117175.673136832 117.98750 0.19835 0.16811
4 mle ga-port 4 117230.692295613 167.24683 0.18095 0.10820
5 nls lbfgsb 4 118002.606827692 242.59233 0.06840 0.02820
- NLS DS+GS 3 117983.932000000 247.00000 0.03400 0.01380
6 nls port 4 119648.266411146 108.15150 0.00168 0.00155
7 nls cg1 1-2 124307.200000000 210.25000 n.a. n.a.
8 mle cg3 1-1 124554.3 247.176 n.a. n.a.
9 mle ga 4 127247.102757183 103.68117 n.a. n.a.
10 mle ds 1-1 129139.7 89.95 n.a. n.a.
11 nls ds 1-1 130141.7 81.6 n.a. n.a.

6. CONCLUSION

Several quasi-Newton methods and meta-heuristics were
applied to a nonlinear optimization problem subject to linear
constraints. Linear and quadratic penalty functions as well as
box-constraints were tested to incorporate the constraints. In
addition, least-square and maximum-likelihood optimization
models were compared. Results show that a Levenberg-
Marquardt and a combination approach seem to be the most
promising technique for this problem. The newly proposed
techniques significantly outperform the existing optimization
procedure in terms of optimization quality and
computational time.

REFERENCES

[1] M. Avriel, Nonlinear Programming: Analysis and
Methods, Dover Publishing, 2003.

[2] C. J. P. Bélisle, Convergence theorems for a class of
simulated annealing algorithms on ℝd . Journal of
Applied Probability, Vol. 29, No. 4, 1992, pp. 885-
859.

[3] A. Estrella, A new measure of t for equations with
dichotomous dependent variables. Journal of
Business and Economic Statistics, Vol. 16, No. 2,
1998, pp. 198-205.

[4] D. M. Gay, Usage summary for selected optimization
routines. Computing Science Technical Report No.
153, Murray Hill: AT&T Bell Laboratories, 1990.

[5] S. M. Goldfeld and R. E. Quandt, Nonlinear Methods
in Econometrics, Amsterdam: North-Holland, 1972.

[6] J. E. Koonatz et al., A modular system of algorithms
for unconstrained minimization. ACM Trans. Math.
Software, Vol. 11, No. 4, 1985, pp. 419-440.

[7] W. R. Mebane and J. S. Sekhon: R version of Genetic
Optimization Using Derivatives. R package version
5.1-9, 2007.

[8] J.J. Moré, The Levenberg-Marquardt algorithm:
implementation and theory, Lecture Notes in
Mathematics, 630: Numerical analysis (Watson, G.
A. ed.), 1978, pp. 105-116.

[9] J. C. Nash, Compact Numerical Methods for
Computers: Linear Algebra and Function
Minimization. Bristol: Adam Hilger, 1990.

[10] J. A. Nelder and R. Mead, A simplex algorithm for
function minimization. Computer Journal, Vol. 7,
1965, pp. 308-313.

[11] A. E. Eiben and J. E. Smith, Introduction to
Evolutionary Computing. Berlin: Springer, 2003.

[12] J. Nocedal et al, A limited memory algorithm for
bound constrained optimization. SIAM J. Sci.
Comput., Vol. 16, No. 5, 1995, pp. 1190-1208.

[13] J. Nocedal and S. J. Wright, Numerical Optimization.
New York: Springer, 1999.

[14] R-Project for statistical computing, URL:
http://www.r-project.org/, 1.12.2008

[15] K. E. Train, Discrete Choice Methods with
Simulation. Cambridge: Cambridge Univ. Press, 2003.

http://www.r-project.org/

