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ABSTRACT
In this article we analyze several optimization methods of a 
real-life  nonlinear  optimization  problem  in  R.  The 
optimization  problem  results  from  fitting  a  multinomial 
logit-model. This is part of the so called Brand Simulator, a 
tool to forecast  and simulate  possible marketing mixes.  In 
the  existing optimization procedure,  simple  derivation-free 
techniques are used. The objective of this paper is to apply 
several  promising  optimization  techniques  in  order  to 
improve optimization with respect to time and quality. Hence 
a  testbed  was  implemented  in  R.  Results  show  that  the 
proposed  techniques  outperform  existing  optimization 
procedures in most of the cases.

Keywords:  marketing-mix  analysis,  Multinomial  logit-
model,  logistic  regression,  optimization,  quasi-Newton 
methods, maximum-likelihood estimator.

1. INTRODUCTION
The  “Brand  Simulator”  (BS)  is  a  software  tool  for 
optimization and simulation. The major purpose of the BS is 
the  simulation  and  analysis  of  the  impact  of  different 
marketing-mix  concepts  on the behavior  of  households  in 
Germany in the fast-moving-consumer-goods market. 
Whereas the BS consists of several  optimization steps and 
modules, we focus in this paper on the optimization of a sub-
model denoted as brand model (BM). The BM is based on a 
multinomial  logit-model  (MNL).  In  the  BS  the  involved 
parameters  are  estimated  by linear-least  square  estimation 
through data  drawn from a consumer panel.  Least-square 
estimation  of  a  MNL results  in  a  nonlinear  optimization 
problem,  which  must  be solved by nonlinear  optimization 
techniques. In addition, several parameters of the model are 
subject  to  linear  constraints  in  order  to  meet  marketing-
specific  needs.  In  the  BS  the  optimization  is  done  using 
derivation-free  techniques  such  as  Nelder-Mead  technique 
and  Golden  Section  Search  [1]  so  far.  Constraints  are 
incorporated by a linear penalty function.
In  order  to  improve  existing  optimization  procedures,  the 
following alternative methods were applied to the problem: 
derivation-based  quasi-Newton  methods,  a  genetic 
algorithm,  simulated  annealing,  and  a  combination  of  a 
quasi-Newton method with the genetic algorithm. In doing 
so,  parameters  are  simultaneously  optimized  instead  of 
separate  optimization.  Moreover,  alternative  ways  of 

incorporating the linear constraints such as quadratic penalty 
function, barrier function and box-constraints are compared. 
Additionally, maximum-likelihood estimation is applied. 
To  verify  the  introduced  experiments,  the  optimization 
problem was implemented in  R.  In  view of the  numerous 
experiments to be solved, the problem was embedded in a 
testbed.  Whereas  the  testbed  was  implemented  in  pure  R 
code, the core modules of the objective function computation 
are  mainly implemented  in  C subroutines.  The  quality  of 
optimization  and  simulation  is  evaluated  by  several 
goodness-of-fit measures. 
In  the  remainder  of  this  article  we  will  present  the 
optimization  problem  in  short.  We  introduce  the  special 
features of the BM, input data, optimization procedure, and 
how  optimization  quality  is  measured.  In  Section  3,  we 
briefly describe the methods used for optimization. Section 4 
presents  experimental  settings  and  implementation  of  the 
testbed and in Section 5 we discuss the results derived from 
experiments.

2. OPTIMIZATION PROBLEM
Features of the brand model
The  BM  represents  a  purchase  situation  in  which  an 
individual faces a set of alternatives. The specification of the 
BM is based on an MNL. The MNL belongs to the discrete 
choice models in which the set of two or more alternatives is 
discrete and finite [1]. In the model, the explained variable is 
the  set  of  brands  and  the  explanatory  variables  are 
marketing-mix  variables  such  as  price  or  promotion.  The 
parameters  of  the  model  describe  the  impact  of  the 
explanatory  variables  on  the  explained  variable.  From  a 
technical  point  of  view,  the  BM  estimates  the  purchase 
probability of  each brand  i within  a  set C of  alternative  j 
subject  to  explanatory  variables X and  its  parameters   . 
The MNL guarantees that probabilities for each brand within 
a set of alternatives add up to 1. The purchase probability of 
a brand is given by

P i=
expi X i

∑
j∈C

exp j X j
.  (1)

Compared to a traditional MNL, the BM differs in the 
structure  of  alternatives  and  the parameters.  Due to  panel 
properties, a set of alternatives in a certain purchase situation 
cannot  be  observed  directly.  Therefore,  alternatives  are 
identified  and  calculated  on  the  basis  of  information 



extracted from employed data [15]. The  sets of alternatives 
in a certain purchase situation may vary in size, explanatory 
variables and, consequently, in the number of parameters. In 
the  BM,  the  various  sets  of  alternatives  are  denoted  as 
contentions.  The  number  of  parameters  for  estimation 
depends  mainly on  the number  of  brands involved  in  the 
analyzed data set C . 

Input data
Data for this study was provided by the GfK Group drawn 
from  a  consumer  panel  maintained  by  the  company.  The 
panel records purchase acts of households on a weekly basis. 
A purchase  act  contains  information  such  as  time,  place, 
subject,  or  quantity  of  purchase.  Received  data  was 
reassessed  and  edited  by  means  of  statistical  principles. 
From  this  data,  sets  are  extracted  related  to  specific 
commodity  groups  containing  different  brands.  For  this 
work, a large and a small data set are used. The large data set 
includes 445,896 purchase data records, whereas the small 
data set includes 31,041 records.

Original optimization procedure
Using  the  least-square  method  for  optimizing  the 
parameters of the BM, the problem is given as

min


∑
i∈C

 y i−P i
2

 
subject to
c l0 ,

(2)

where c l denotes  l linear  constraints  restricting  the 
parameters,  y i refers to the observed purchase acts and can 
only take the values 0 or 1, whereas P i takes values between 
0  and  1.  Parameters  are  optimized  separately.  Hence 
optimization  is  organized  in  five  runs  [15].  Each  run 
optimizes a different set of parameters. For multidimensional 
optimization,  a  Nelder-Mead  technique,  also  called 
Downhill-Simplex  (DS),  is  adopted  and  a  Golden-Section 
Search  (GS)  is  applied  to  the  one-dimensional  case  [1]. 
Separate  optimization  is  used  because  the  Nelder-Mead 
technique cannot manage the optimization of  simultaneous 
variables. The optimization is terminated by stopping criteria 
such as a maximum number of iterations or a drop below a 
minimum change in the objective value. Linear constraints 
of the problem are incorporated by a linear penalty function. 

Optimization quality
Optimization  quality  is  measured  by  a  goodness-of-fit 
measure developed by Estrella [3]. Its purpose is to provide a 
goodness-of-fit for discrete choice models comparable to the 
R²  calculated  in  traditional  regression  analysis.  Table  1 
shows  the  performance  of  the  existing  optimization 
procedure subject to employed data sets.  Due to the small 
data,  optimization  took  about  4  hours  resulting  in  an 
Estrella's  R²  of  0.034.  Considering  the  small  data, 
optimization took 9 minutes resulting in an Estrella's R² of 
0.062. In both cases optimization quality is relatively poor.

Table 1. Optimization of BM in the Brand Simulator

Characteristics Small data set Large data set
Number of parameters 71 165
Number of constraints 58 134
Computation time in 
minutes

9 234

Starting objective 
value 

7,770.894 142,098.827

Objective value after 
optimization

5,828.917 117,983.932

Estrella's R² 0.062 0.034

3. PROPOSED METHODS

In  order  to  improve  optimization  procedure,  several 
derivation-based  methods  and  meta-heuristics  are 
implemented.  This  includes  5  quasi-Newton  methods,  a 
version  of  a  genetic  algorithm,  and  a  combination  of  the 
genetic algorithm with a quasi-Newton method. In addition 
to that, a Nelder-Mead technique [10] comparable to that of 
the  Brand  Simulator  is  applied  as  a  benchmark.  In  our 
experiments, all parameters are optimized simultaneously.

Quasi-Newton methods
The  set  of  quasi-Newton  methods  proposed  for  the 
optimization  problem  includes  three  types  of  conjugate 
gradient techniques (CG) [9], three implementations of the 
Broyden-Fletcher-Goldfarb-Shannon  procedure  (BFGS) 
[4,6,9],  a  limited  BFGS with  box-constraints  (L-BFGS-B) 
[12],  the  Levenberg-Marquardt  (LEV-MAR)  [8]  and  the 
Brandon-Hall-Hall-Hausmann method (BHHH) [5]. Among 
the CG, a Fletcher-Reeves version (CG1),  a Polak-Ribière 
version  (CG2)  and  a  Hestenes-Stiefel  version  (CG3)  was 
applied.  All  techniques  are  available  in  the  standard 
distribution of R or in additional packages [14]. All proposed 
methods use

k1=kk pk , (3)
where subscript  k denotes the k-th iteration, pk defines the 
search direction and k defines the step length. The proposed 
methods differ in varied computations of the search direction 
and step length. 

First-order  derivations  (gradient)  and  the  various 
approximation of second-order derivations are calculated by 
finite differentiation [13]. The calculation of derivations lead 
to further computation time at each iteration, the number of 
iterations, however, for achieving an acceptable optimum is 
expected to decrease. 

Genetic algorithm
Instead  of  calculate  derivations,  a  genetic  algorithm (GA) 
uses special search operators to compute new trial solutions. 
The  GA we  propose  for  this  problem  is  based  on  the 
GENOUD program [7]. It is highly scalable and incorporates 
nine  search  operators.  Those  include  four  crossover 
operators,  four  mutation  operators  and  one  operator  for 
cloning. Additionally, the GA implements an elite strategy to 
improve convergence property [11]. Moreover, the GA offers 
a combination with quasi-Newton methods. In this study, the 
GA was  combined  with  the  BFGS  version  of  the  PORT 
routines  which  enables  box-constraints  (GA-PORT).  This 
feature  exists  mainly  for  improving  local  optimization 
performance as GA are known to perform inefficiently near 
an optimum [11].

Simulated annealing
We implemented simulated annealing (SA) for this problem 
as described in [2]. There the SA method uses a logarithm 
temperature schedule dependent  on the current  iteration,  a 
starting temperature and the maximum number of function 
evaluations. Starting temperature and maximum number of 
evaluations can be set by the user. 

Maximum-likelihood estimation
In addition to the least-square method for optimization, the 
maximum-likelihood estimation (MLE) is used. In general, 
MLE is considered to be a standard approach for estimating 
a logit-model [15]. The MLE objective function is given by



max

∑
i∈M

ln P i  
subject to
c l0 ,

(4)

where the set M covers all observations where y i=1 .

Constraints handling procedures
In addition to the linear penalty function, a quadratic penalty 
function  and  a  logarithm  barrier  function  are  evaluated. 
Compared  to  the  linear  penalty  function,  an  individual 
penalization  is  pursued  as  each  constraint  violation  is 
penalized individually.  Penalty or barrier methods augment 
the  objective  function  and  hence  transform  a  constrained 
problem to  an  unconstrained  problem.  Penalty  procedures 
count  among dual  methods,  whereas  barrier  functions  are 
related to inter-point procedures. Considering the penalty as 
well as the barrier procedure, outer iterations are necessary 
with respect to a declining penalty parameter. Theoretically, 
a decline in the penalty parameter forces the optimizers to 
become feasible [13]. There is, however, no guarantee that a 
final  solution  achieves  feasibility.  For  comparison,  the 
simpler box-constraints feature  available in the GA, BFGS 
and L-BFGS-B are used as well.  In contrast to penalty and 
barrier  procedures,  box-constraints  are  integrated  in  the 
method's algorithm and are counted among primal methods 
[13]. The adjusted algorithm guarantees feasibility during the 
whole optimization and no outer iterations are required. 

4. EXPERIMENTAL SETTINGS 
AND IMPLEMENTATION

The challenge of applying different techniques to a problem 
is to make the performance of the techniques comparable. In 
doing  so,  equivalent  controlling  parameters  among  the 
techniques  were  identified  and  synchronized  to  enable 
similar  conditions.  This  includes  stopping  criteria  with 
respect  to  maximum  iterations,  to  relative  changes  in 
objective or gradient. Different types of techniques, however, 
are  accompanied by different  controlling parameters.  As a 
consequence, those parameters were adjusted in such a way 
that  the  optimization  effort  was  comparable  as  exactly as 
possible.  Optimization  time  was  measured  in  terms  of 
number of objective function evaluations. These values were 
derived from several test runs. 

As a result, the maximum number of iterations was set to 
10 for all methods except for the LEVMAR, Nelder-Mead, 
SA and  GA.  LEVMAR  only  allows  the  adjustment  of  a 
maximum number of function evaluations per iteration. This 
parameter was set to 1,000 in the event of outer iterations 
and  1,700  without  outer  iterations.  Similarly,  maximum 
iterations of Nelder-Mead and SA were limited to 10,400 in 
the  event  of  outer  iterations  and  otherwise  to  1,300. 
Implementation-based parameters were set to default. Hence 
it is assumed that in general all techniques perform best with 
its  default  values.  One  Exception  was  found  in  the 
LEVMAR algorithm. Here,  test  runs suggested to increase 
the accuracy of finite differentiation to 1e-5 instead of 1e-3 
(default). 

For  the  implementation  of  the  constraints,  the  type  of 
penalization of the quadratic penalty and logarithm barrier 
procedure had to be adjusted. We decided to realize a strict 
and a mild penalization. This was done by setting the starting 
penalty parameter 0 to 1 (strict) and 2 (mild). The decline
 in the penalty parameter at each outer iteration was fixed 

to 10% of the previous value. The maximum number of outer 

iterations was set to 8 in order to keep the number of total 
iterations low. For comparison, the linear penalty used in the 
original Brand Simulator was implemented as a benchmark. 
A summary of all configurations and their reference number 
is given in Table 2. 

Configurations 1-1, 1-2, 2-1, 2-2 and 3 were used with 
CGs, BFGS, L-BFGS-B, LEVMAR, BHHH, as well as SA 
procedures and the box-constraints were used with BFGS, L-
BFGS-B and the GA. For the latter, only the box constraints 
method was deployed. In general, the proposed penalty and 
barrier procedures are considered to be inefficient with GA, 
especially  in  the  event  of  many  constraints.  Thus  it  is 
preferable to use primal methods [11]. 

Table 2. Configurations of constraints handling procedures

ID Procedure  µ0 σ Maximum outer 
iterations

1-1 quadratic penalty 1 0.1 8
1-2 quadratic penalty 2 0.1 8
2-1 logarithm barrier 1 0.1 8
2-2 logarithm barrier 2 0.1 8
3 linear penalty - - -
4 box-constraints - - -

Both  the  least-square  and  maximum-likelihood 
procedures  were  applied to  all  settings.  By its  nature,  the 
LEVMAR  could  solely  be  used  with  the  least-square 
procedure. Similarly, the BHHH could only be used with the 
MLE.  The  study  is  conducted  in  three  phases.  First,  all 
experiments  are  processed  on  basis  of  a  small  data   set. 
Second,  the  most  promising methods  in  combination with 
constrained handling procedures are applied to a large data 
set to verify performance. In summary, 234 experiments (or 
optimization runs) are conducted due to the small data set, 11 
experiments on the basis of the large data set. 

For implementation the software package R is chosen. This 
is  because it  is  freely available,  it  is  easy and flexible  to 
implement the special features of the BM and the proposed 
optimization  techniques  are  available.  The  testbed 
compounds several  R functions.  One of them is  the  main 
function in which experiments can be set centrally. Central 
settings prevent faulty input information. 

Specified settings as well as automatically pre-calculated 
information  are  passed  as  input  to  selected  optimization 
techniques. This ensures that input information is attuned to 
each  interface  to  ensure  reliability  and  validation  of  the 
results due to applied technique. After optimization, results 
are processed and recorded in a table including information 
about  experiment  settings,  achieved  least-square  function 
value, computation time recorded in minutes, Estrella's  R², 
the efficiency measure and feasibility of solution.

The major challenge was to reduce computation time of 
the  objective  function.  Therefore,  loops  for  allocating 
parameters  for  the  corresponding  data  sets  and  the 
denominator of (1) were coded as C subroutines. In addition, 
information about contentions structure, calculated prior, was 
used to diminish the loop size and matrix operations were 
abandoned in favor of vector operations,  which are highly 
efficient in R. 

5. RESULTS

A first  exploration  of  the  results  revealed  that  the  barrier 
function  did  not  work  well  with  finite  differentiation. 
Therefore, those results were excluded for further analysis. 
So the number of results reduced from 234 to 158. To focus 
on the best results, feasible results exceeding the average are 



selected. Table 4 shows these results from small data set in 
descending order with respect to Estrella's R², where “o.f.” 
stands for “objective function”.  

For comparison, we included the optimization result of 
the original Brand Simulator (#29). The results indicate that 
optimization  in  the  original  Brand  Simulator  was  clearly 
outperformed in quality and performance. The DS integrated 
in  R  was  inferior  to  quasi-Newton  methods  and  meta-
heuristics.  Among applied techniques,  LEVMAR (#1 with 
0.590260)  and  BHHH (#2  with  0.545580)  performed best 
while LEVMAR was far more efficient (ratio of 10.97469 to 
5.18091). This outcome is not surprising, as both techniques 
exploit the special structure of the objective function due to 
least-square estimation and maximum-likelihood estimation 
respectively.  Furthermore,  the  combination  of  the  GA and 
the BFGS-PORT proved to be efficient (#3 with 0.435517) 
and  outperforms  the  respective  methods  GA  (#16  with 
0.378640)  and  the  best  BFGS-PORT (#9  with  0.396960). 
The BFGS-PORT, however, was faster (ratio of 11.15226 to 
7.04040). Considering time, the BFGS-PORT in combination 
with NLS turned out to be the most efficient technique. The 
achieved optimization quality of applied SA configurations 
was below the average.  One reason could be that  penalty 
function combined with SA prevent the SA to achieve better 
optimization quality. Furthermore, the default values of the 
SA may not  be  adequate  for  the  considered  optimization 
problem. 

Considering  estimation  methods,  no  clear  evidence  is 
given  whether  the  least-square  or  maximum-likelihood 
estimation is more qualified. There is only a slight tendency 
that maximum-likelihood lead to better results in average.

Table 3 shows the robustness of the constraints handling 
configurations. As expected, the most robust configuration is 
the box-constraint configuration. No infeasible solution has 
been  generated.  Among  the  penalty  functions,  the  linear 
penalty function turned out  to  be more  robust.  The linear 
penalty  function,  however,  led  to  inferior  optimization 

quality.  A  milder  penalization  should  be  preferred  to  a 
stricter penalization amongst quadratic penalty functions.

Table 3. Robustness of constraints handling procedures

Configuration feasible 
optimizers

infeasible 
optimizers

Sum

1-1 17 21 38
1-2 23 15 38
3 31 7 38
4 44 0 44
Sum 115 43 158

We found similar  results  using the  large  data  set  (see 
Table  5).  Again,  LEVMAR  (#1)  outperformed  all  other 
techniques  (including  results  from  the  original  Brand 
Simulator). In addition, it turned out to be the most efficient 
technique (ratio of 0.16817). The results on BHHH are not 
available since BHHH was not able to manage the involved 
large  vectors.  L-BFGS-B turned  out  to  be  competitive  in 
terms of optimization quality but suffers from relatively high 
computation time. Sticking to computation time, most of the 
tested  techniques  outperform  the  Brand  Simulator  with 
respect to computational  time.  LEVMAR e.g.  is  1.5 times 
faster  than  the  Brand  Simulator.  This  is  surprising,  as 
implementation in the Brand Simulator bases completely on 
C  sources  and  is  therefore  expected  to  be  much  faster, 
especially due to storage management. The performance of 
the  Levenberg-Marquardt  could  be  further  enhanced  by 
using  analytical  derivations.  This  would  reduce  multiple 
function evaluations at each iteration. 

Considering  the  optimization  program,  the  maximum-
likelihood optimization led to better results with respect to 
the L-BFGS-B, BFGS-PORT and GA-PORT and confirmed 
the tendency of the small data set. Again, the combination of 
GA and BFGS-PORT performed well.

Table 4. Results from the small data set
# o.f. technique constraints least-square value minutes R2 R2/time

1 nls levmar 1-2 5418.15738039334 5.37833 0.590260 10.97469
2 mle bhhh 1-2 5571.69891647763 10.53050 0.545580  5.18091
3 mle ga-port 4 5659.41900000000  6.18595 0.435517  7.04040
4 nls levmar 1-1 5599.98244185570  4.88083 0.432380  8.85883
5 mle lbfgsb 4 5670.46027991221  7.61433 0.431530  5.66733
6 mle lbfgsb 1-2 5757.33995396882 11.89933 0.418290  3.51527
7 nls lbfgsb 1-1 5745.67169594246 10.88433 0.415260  3.81523
8 mle cg3 1-1 5808.06856585466  6.93417 0.410200  5.91568
9 mle port 4 5687.64024771080  3.55950 0.396960 11.15226
10 mle lbfgsb 1-1 5790.85404069227 11.50100 0.393850  3.42449
11 mle ds 1-1 5790.27101869178  5.97900 0.390790  6.53611
12 nls lbfgsb 4 5685.20097477194  6.38767 0.390600  6.11489
13 nls port 4 5629.13152252270  3.22817 0.389690 12.07160
14 mle cg3 1-2 5835.35858095708  7.05167 0.385660  5.46900
15 mle bfgs 1-2 5792.71262403588  6.65750 0.378850  5.69052
16 mle ga 4 6003.44310000000  6.12500 0.378640  6.18123
17 nls cg1 1-2 5766.36808461207  5.72400 0.377810  6.60052
18 mle cg2 1-2 5792.99466547177  6.72183 0.377400  5.61460
19 nls cg2 1-1 5784.42395161786  5.93467 0.377160  6.35516
20 nls port 1-2 5774.24620164565  3.13133 0.376920 12.03709
21 nls cg1 1-1 5776.05192006425  5.84650 0.376610  6.44168
22 mle cg2 1-1 5798.36050816819  6.78650 0.376470  5.54733
23 nls cg2 1-2 5780.94833128411  5.88967 0.376130  6.38623
24 nls cg3 1-2 5779.91307155361  5.89733 0.376000  6.37571
25 mle cg1 1-1 5813.19163108785  6.58133 0.369300  5.61129
26 mle ds 3 5875.18662272825  5.92333 0.360470  6.08566
27 nls ds 1-1 5840.84537844609  5.05150 0.357580  7.07873
28 nls ds 1-2 5831.23310004912  5.04183 0.350280  6.94744
29 NLS DS+GS 3 5828.91720000000 9.00000 0.062410 0.69340



Table 5. Results from large data set

# o.f. technique constraints least-square value minutes R2 R2/time
1 nls levmar 1-2 113800.015040000 159.67520 0.26850 0.16817
2 mle lbfgsb 4 116922.048554040 234.13267 0.21294 0.09095
3 mle port 4 117175.673136832 117.98750 0.19835 0.16811
4 mle ga-port 4 117230.692295613 167.24683 0.18095 0.10820
5 nls lbfgsb 4 118002.606827692 242.59233 0.06840 0.02820
- NLS DS+GS 3 117983.932000000 247.00000 0.03400 0.01380
6 nls port 4 119648.266411146 108.15150 0.00168 0.00155
7 nls cg1 1-2 124307.200000000 210.25000 n.a. n.a.
8 mle cg3 1-1 124554.3 247.176 n.a. n.a.
9 mle ga 4 127247.102757183 103.68117 n.a. n.a.
10 mle ds 1-1 129139.7 89.95 n.a. n.a.
11 nls ds 1-1 130141.7 81.6 n.a. n.a.

6. CONCLUSION

Several  quasi-Newton  methods  and  meta-heuristics  were 
applied to a nonlinear optimization problem subject to linear 
constraints. Linear and quadratic penalty functions as well as 
box-constraints were tested to incorporate the constraints. In 
addition, least-square and maximum-likelihood optimization 
models  were  compared.  Results  show  that  a  Levenberg-
Marquardt and a combination approach seem to be the most 
promising technique for this problem. The newly proposed 
techniques significantly outperform the existing optimization 
procedure  in  terms  of  optimization  quality  and 
computational time. 
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