

A Survey of Version Control Systems

Ali Koc, M.A.

Graduate Center – City University of New York

New York, USA

Abdullah Uz Tansel, PhD

Baruch College – City University of New York

New York, USA

Abstract—Version control has been an essential aspect of any

software development project since early 1980s. In the recent

years, however, we see version control as a common feature

embedded in many collaborative based software packages; such

as word processors, spreadsheets and wikis. In this paper, we

explain the common structure of version control systems,

provide historical information on their development, and

identify future improvements.

Keywords- version control; revision control; collaboration.

I. INTRODUCTION

Change is a vital aspect of data. Most data encounters
multiple modifications over the course of its life. For
certain forms of complex data, version control (aka
revision control) systems are commonly used to track
changes; such as software source code, documents,
graphics, media, VLSI layouts, and others.

The main purpose of version control systems is
collaboration. The first version control systems appeared
as far back as 1970s -- with the principle of easier
management of source code files continuously modified
by multiple software developers (1). Since then, software
developers, engineers, scientists and even artists have
shown increasing interest to version control
systems.These systems provide the ability to see the
evolution of data over time, a snapshot of it in certain
point in time, ora way to recover/restore if needed. These
aspects of version control systems made them a vital
component of collaborative and groupware systems.

Version control systems allow sharing of data among
nodes where every node can stay up to date with the latest
version of the data. If anything goes wrong, with version
control you can always discard your changes and start
from the last known valid version. If the mistake was done
long time ago, version control system has the facility to
travel through the revision tree and continue from a
version that works.

Version Control systems are not just about the change,
but are also about the reasoning behind the changes. Often
times, we would like to see not only the evolution of the
data but also the reasoning behind it. In a Version Control
System, each change is associated with answers to the
following questions: who, when and why. For every
change, a message explaining the change, the user and the
date of the change is stored. This allows group of users to

see who works how much, give credit or blame mistakes −
blame is actually a command in some version control
systems (2).

This paper is organized such that in section 2 we
explain the structure of version control systems and
provide an abstract depiction of their basic functionalities.
Section 3 traces the history of version control systems and
briefly describes commonly used software systems. We
discuss possible functions that can be added to version
control systems in Section 4, and Section 5 concludes the
paper.

II. STRUCTURE OF VERSION CONTROL SYSTEMS

The data, its versions, and all the information
associated with each version are stored in a location called
repository. There are four repository models commonly
employed in Version Control systems. The earlier version
of Version Control systems kept repository local – the
person making the changes and the repository would be
on the same machine (1) (3). There are also examples of
repository located on a shared folder which allows users
from within a local area network to collaborate (4). Later
on, client/server models became popular where the central
repository is located on a server and all clients are able to
read and submit changes (2) (5). In the recent years,
distributed repository systems are getting increasing
interest as they allow collaboration without the need of a
central repository (6) (7) (8).

The determination of atomic (smallest) data unit to be
tracked is an important aspect of Version Control
Systems. An atomic data unit is the smallest portion unit
of data where any change to a part of this data would
constitute the whole unit to be marked as changed. For
example, if we are trying to version control text files, the
atomic data unit could be a line, sentence or a word (or a
character for that matter). These data units could be
applied to any text file. For example, a source code file is
essentially a text file. However, contextual knowledge
about the text file may allow us to choose a more
appropriate atomic data unit. For example, for a source
code file, a more appropriate atomic unit may be each
statement of the programming language. Most version
control systems today are text based. While there are
number of systems that are more informed about the
context of the text – such as systems that are aware of
programming language, xml etc. – using line as the atomic

data unit is by far the choice of most popular version
control system solutions in use today (9).

While there are variety of systems developed and in
use today for variety of data types, some common
functionality exist in all version control systems.

In all version control systems, the first step is to get
the data from the repository. The retrieval of data from the
repository with possibly the intent of changing it is called
checkout. If this is the first checkout, than the repository is
empty, hence an empty data set is retrieved. The retrieved
data set is called the local/work copy. Some version
control systems allow user to place a lock on the checked
out data in the repository. This avoids concurrency
problems, where multiple people may checkout the same
parts of the data set with the intention of changing. Other
systems allow multiple users to checkout and modify the
same parts of the data set and deals with concurrency
problems later on.

On the checked out local copy, user works and makes
changes. When the work is completed, the new modified
data set needs to be sent to the repository for storage. The
action of sending the changed data set to the repository is
called commit. Each commit may contain changes to
different parts of the data set – for example, a program
source code may contain many source code files and
multiple files may have been changed and needed to be
committed. It is desirable for version control systems to
perform atomic commits, ensuring that if any part of the
data set being committed fails to be accepted by the
repository, than the whole commit should fail in order to
not to compromise the consistency of the data.

Most systems require users to write a message with
each commit called commit message. This message along
with the name of the user and the date of the commit will
be associated with the changed data set. Each commit is
assigned a unique version number. For most version
control systems, this is a sequential number starting from
version 1. For version control systems using distributed
repository model, it is not possible to coordinate a
sequential numbering on the versions, hence they employ
other methods to assign unique version numbers to each
commit. Most popular methods include pseudorandom
number assignment and/or using hash of the changes as
the version number (7) (8).

If a lock was not placed on the repository upon check
out, than a prior user may have checked out the same data
and then committed it before the user; which would put
the user’s local copy out of sync with the repository. If
any of the atomic data units modified in the local copy of
the user has been changed on the repository, the local
copy of the user goes into conflict state. Note that, it is the
local copy of the user that is in conflict with the
repository. For most version control systems, conflict is
not a valid state and the repository will not allow the user
to commit the new modified data set until the user reads
and incorporates the committed changes of the prior user
(2). Once a local copy goes in conflict state, user needs to
review conflicting local and repository changes and make
further changes if necessary to resolve conflicts. Version

Control systems allow resolved feature to get the local
copy out of the conflict state. If same data set is changed
but no changes collide on atomic data units (no conflict),
the version control system would automatically
incorporate the changes.

Often times, user may want to update the local
working copy from the repository as there may have been
possible commits since the last checkout. If the update
contains changes that would conflict with the local
changes, local copy goes into conflict state. The changes
on the local copy needs to be reviewed and should be
marked as resolved after complying with the changes of
the repository.

The changes may be stored in the repository using
various models. The simplest model is snapshots, where a
complete copy of the data set is stored for each version.
For certain data types, this method is still employed –
such as in the version control of images, binary media
where determination of atomic data unit is not necessarily
well defined. For data sets that have a well defined atomic
data unit, the most common method is changesets (deltas),
where only the modified atomic data units are stored with
each version. This, in most cases, provides significant
saving in repository storage space.

The changeset method, however, comes with the need
of data set construction in order to get to a certain version
of it. For example, in order to check out the latest version
of the data set, a build process is required starting from the
initial version of the data set (version 1), incorporating
each delta, all the way to the last version, traversing the
complete version tree. A typical software project
repository is composed of thousands of versions.
Assuming most users are interested in the latest version of
the data set, this creates a significant overhead, especially
for large repositories. To avoid this overhead, most
version control systems employ reverse delta scheme. In
this scheme, the last version of the data set is stored and
all the changes are recorded as reverse deltas from this
data set.

Atomic Data Unit Repository

Line, Sentence, Statement,
Node, etc.

Local, Shared Folder,
Client/Server or Distributed

Concurrency Storage

Lock, Merge or Both Snapshot, Forward Delta or
Reverse Delta

Table 1 - Classification of Version Control Systems

Sometimes it is desirable to evolve data sets in
multiple directions in parallel and have the option to
merge the evolutions later on into main data set. For
example, a mechanical engineering firm may start with a
core design of a device, and then create multiple branches
out by incorporating different styles and features. At some
stage during development, some branches may prove to be
unsuitable, hence discontinued; while other branches may

contain features they would like to incorporate to the core
design. Many types of data sets go through this type of
evolution making branches a vital feature of version
control systems. The root of the repository (the main data
set) is called the trunk. It is possible to branch out from
any version of the trunk. Also, most version control
systems allow branching out from other branches as well
(10). Tags are special types of branches that mark a
milestone along the evolution of a data set – ex. major
release of software, an approved version of a prototype.
Merge functionality allows changes on one branch to be
applied to another branch.

Let’s setup a repository system for data set � . The
snapshot versions of � are represented as
��, ��, ��, �� . . �	 , where n is the number of the latest
version. Let �
 represent the initial state of the repository.
For systems using deltas, they are represented as:

 ��� = ���� − ��

Keep in mind that these versions may have been
committed to different branches of the repository.

 SNAPSHOT FORWARD DELTA REVERSE DELTA

Checkout � = �	 � = � ���

	

���
 � = � ���

�

��	

Commit �	�� = �	 + �� ��	�� = ��
�	�� = �	 + ��

�	 = �	�� + �	

Update �� = �	 + (�� − �) �� = �� + � ���

	

���
 �� = �� + � ���

�

��	

Table 2 - Basic operations of a version control system

A typical use scenario of a version control system would

follow these steps:

Checkout: � = �	 ; where � is the new local working copy

Modify:
�′ = �(�); where �′ is the modified copy, and � is the work

on �.

Delta: �� = �′ − �;

Commit: �	�� = �	 + ��

Above operations are for a snapshot based system. In the

case of a version control system where changeset method

is employed:

Checkout: � = ∑ ���	��� ; where � is the new local working copy

Modify:
�′ = �(�); where �′ is the modified copy, and � is the work

on �.

Delta: �� = �′ − �;

Commit: ���+1 = ��

III. THE HISTORY OF VERSION CONTROL SYSTEMS

A. VMS

The history of version control can be traced back to
DEC’s VMS operating system, which employed a natural
technique of tracking revisions of files by never deleting
them. The operating system simply created a new file with
the same name but attaching a different sequence
(version) number. The system’s storage requirement was
expensive and it created just too many files that were hard
to distinguish by users. The system versioned files but it
did not provide version control (11).

B. SCSS

The first real version control system goes back to 1972
when a Source Code Control System (SCCS) started
getting developed by Marc J. Rochkind at Bell
laboratories as a set of commands developed for
OS/MVT, and later on UNIX. Though, he did not use the
exact version control terms that we use today, his paper
laid out the first clear version control system based on
forward deltas, incorporating checkout, commit, and
locking system to avoid conflicts (1).

SCCS was primarily developed to version control
source code changes in software development
environments. Each source code module is assumed to be
in its own file and each file is version controlled
independently. The system generates deltas using two
primitives: insert line and delete line. Changing a line
(even only one character change) is basically treated as the
combination of deleting the current version of the whole
line and then inserting the new version. Also movement of
a block lines from one position to another within the
module also treated as deleting the block of lines from its
existing location and inserting them into their new
position.

All the deltas are stored within the file in a special
section called body. The body contains the text deltas of
insertions (text records) and an extra record enclosing the
text delta specifying the effect of it on the document
(control records). For example, a new line inserted in a
module would be represented inside the module file with
the new text inserted into its position and enclosed with
insertion control record and end control record codes
indicating the version number and the extend of the new
data.

While the version tree of SCCS looks linear, the sense
of branching is still there through the use of version
numbers and optional deltas. For example, version 1.5
could be interpreted as branch 1 version 5. Programmers
can post deltas (commit) to version 1 (only to end of it),
while development is going on for version 2. In the earlier
version of SCCS, the new delta applied to version 1 (let’s
say v1.6) would be automatically carried to version 2,
hence the linear version structure. The support for optional
deltas allows certain deltas to be ignored providing a
sense of branching and version tree type structure. For
example, a new delta applied to version 1 (ex. v1.6) would
have the flag/tag/option-letter so that it is ignored for
version 2. This feature, as explained in the paper, is also

used to incorporate temporary fixes only for certain
customers (1).

Marc explains the motivation behind the development
of SCCS as the common challenges faced in software
development life cycle. As he puts it, as soon as
something goes wrong, the first question an experienced
programmer asks is “What changed?”, and SCCS was
designed to address just that. SCCS was not only used for
source code control, it was also used for documentation
versioning. In fact, in the paper, Marc says that it would
be appropriate to call the system “text control” rather than
“source control” (1).

Some UNIX distributions included SCCS as part of
their standard command set. SCCS remained the dominant
version control system until the release of Revision
Control System (RCS) (10).

C. RCS

Revision Control System (RCS) was developed in
1980s by Walter F. Tichy, as the successor of SCCS with
significant improvements. RCS organizes revisions into
ancestral tree where the initial revision is the root of this
tree. The edges of the tree indicate from which revision a
leaf is evolved. RCS introduced the concept of merging
(mergediff) by loosening the controls and implementing
access controls to detect and prevent conflicts. The terms
check-in (ci command), check-out (co command),
branching (based on version numbering system), update
are used similar to the way we use today (3).

Unlike SCCS, RCS used reverse delta method for
storage where the most recent revision on the trunk is
stored intact and all the other deltas basically describes
how to go backwards from the most recent version. This,
of course, has the advantage of making the checkout of
the most recent copy simple and fast. It is also simpler to
commit as the operation of adding a new revision is now
composed of placing the document being checked in
directly as the most recent version and replace the
previous version with a reverse delta. Branching,
however, is handled with forward deltas, thus reaching to
the tip of braches can be costly. Performance gain can be
achieved by implementing caching for the most recently
accessed revisions (3).

RCS has been used to version control wide variety of
data, such as source text of drawings, VLSI layouts,
documentation, specifications, test data, form letters and
articles.

The main disadvantage of version control systems up
until this point, however, was that they operated only on
single files and did not provide capability to handle
projects consisted of multiple files.

D. CVS

CVS (Concurrent Versions System) was developed by

Dick Grune as Unix shell scripts around RCS with the

motivation to work collaboratively with his students on

the development of a C compiler called ACK. If it is used

for the version control of a single file CVS could be

considered as a wrapper to RCS. The real advantage and

usefulness of CVS comes from the fact that it lets users

treat a whole set of files as if it is a single file, making

version control (commands) simpler for multi file

projects. Using symbolic mapping, CVS keeps a database

of symbolic names to a set of directories and files. A

single command can manipulate an entire collection of

directories and files (5).

CVS also introduced distributed use by providing a

client/server model allowing multiple developers at

remote locations to interact with the version control

system as a team. Version history of the project is stored

on a central server while users worked on their local work

copy on their client machines. This made certain

operations of the version control system network

availability dependent. However, in his paper, Dick

Grune explains this as slight inconvenience under normal

operation; and later on, as network systems became more

dependable, it became an even less of a concern.

As its name suggests (Concurrent), another big

advantage of CVS from its predecessors was that it

allowed checkout of files without locking. That means

users could work on the same file at the same time.

CVS made its mark to 1990s as the choice of version

control system. However, CVS’s lack of will to provide

certain features to keep up with the changing trends, new

clones of CVS started to popup: CVSNT, EVS, Open

CVS and Subversion. Subversion gained traction and

became the popular version control system of 2000s. In

early to mid-2000s, most CVS users began to move to

Subversion (10).

E. Subversion

Subversion was developed by CollabNet as the

“better CVS”. They wanted to create a version control

systems that is free of the limitations of its predecessor

(CVS) and is more suited for the changing trend of the

development projects (2).

Perhaps the most important innovation of Subversion

was its support for atomic commits. The word atomic is

used in the context similar to the way it is used in

transactional database systems. If a commit of a set of

files at some point fails to complete (by perhaps crashing

the system or simply being rejected by the system due to

conflicts), the central database holding the changes

should be resilient and have the ability to reject all the

changes of the commit process, keeping the system

consistent and free of corruption.

Another important capability Subversion provided

over CVS was the moving and renaming of files and

directories. CVS did not version file names and

directories. As refactoring became more popular in

software development projects, the need for this feature

became apparent. Refactoring is the act of restructuring

an existing set of code modules, altering their structure

without changing the behavior. Today refactoring is used

to improve code quality, reliability, and maintainability

throughout the software lifecycle. The process of

restructuring commonly requires module (file) names to

be changed and/or moved. Move and Rename are

standard operations in Subversion (2).

Subversion also introduced full support for Unicode

and non-ASCII file names, full support for binary files,

branching and tagging as cheap operations, all of which

lacked by CVS system.

F. Distributed Version Control Systems (Git, Mercurial,

Bazaar, etc)

In the late 2000s, version control discovered the

advantages of distributed computing and started to move

away from central repository and simple client/server

model. Today, they are considered to be the future of

version control systems.

Distributed version control systems keep entire repository

on user’s local computer, making it better suited for large

projects with more independent developers. Distributed

version control systems such as Git, Darcs, BitKeeper,

Mercurial, Bazaar, SVK and Monotone provide

significant advantages of central version control systems

by allowing users to work and use full version control

feature set even when there is no network connection -- a

limitation inherited by central systems starting from CVS.

Since dependability to network is less, then those

operations that did require network connection are now

much faster. In central version control systems, the

changes are version tracked only when the changes are

committed to the server, however, distributed systems

allowed version control of changes done locally allowing

early drafts of work to be revisioned without requiring it

to be published to others.

The main disadvantage of distributed systems is that

they are less intuitive from the user’s point of view. They

lack understandable version numbering system (as there

is no central server to assign versions). They usually use

hashes of the changes or unique GUIDs (12).

Lack of a central server also made system backups

harder. In a central client/server model backups are taken

on the server repository ensuring that all committed

changes are taken into account during the backup

process. In the case of the distributed model, every client

has their own repository and there is no guarantee that

any one of the nodes has all the changes. That means

backup operation needs to be done independently by each

node.

IV. ENHANCING VERSION CONTROL SYSTEMS

Distributed version control systems are getting wide
acceptance, especially among software developers. One of
the foreseeable future improvements would be to
incorporate features of social networking into version
control systems. For example, if we take a software
engineering project and a set of developers, each
developer would benefit from knowing which developer is
working on which parts of the project, even ahead of the
actual commit action. We propose a new feature to
version control systems, called “anticipate”, that provides
a look ahead for developers where they would know
which users are online/changing files, and which files are
currently being worked on.

Ability to see real time work of team members, and
perhaps communicate via instant messaging would greatly
benefit collaboration. It would also avoid future conflicts.
Usually conflicts occur when two developers work on the
same part of the project and try to commit their changes.
The “anticipate” feature would allow developers to
communicate ahead of time, alleviating the complication
of merging processes; perhaps even avoid conflicts, or at
the very least, it would assist in conflict resolution
process.

Currently, version control systems are mostly
available as standalone application (CVS, SubVersion,
GIT etc.). However, the recent trend has been to
incorporate version control into various types of software.
Word processors such as Microsoft Word, OpenOffice
Writer, KWord, Pages built in version control systems.
Some spreadsheet applications Microsoft Excel, Open
Office Calc, KSpread, Numbers also include version
control features (13). Autodesk Vault, a data management
tool for revision management, is part of many Autodesk
products, used mostly (but not limited to) version
management of CAD documents for architectural,
mechanical, civil and electrical engineering (14) (15) (16).
In fact, there is number of research around version control
of VLSI (Very-Large-Scale Integration) processes dating
back to 1980s (17) (18). Version control on hypermedia
systems was the focus of research during 1990s (19) (20).
More recent research exists on version control of Simulink
models (21), version control of journal articles and so on.
One research area could be exploring the possibility of
integrating version control directly into development
languages, or perhaps supplementing the development
environments in the form of a framework, such that
developers could easily create applications with version
control capabilities. This could be considered as bringing
version control to the context of the application.

V. CONCLUSION

Version control is an essential part of collaboration
systems that is becoming widespread in every sphere of
life. We have examined the version control systems by
considering repository structure, concurrency, storage, and
data unit. We have also covered the history and basic
functionality of version control systems.

There are several directions for research in version
control systems. One area of research could be making
version control available to wide variety of domains by
exploring the possibility of integrating version control
feature directly into development languages, or perhaps
supplementing the development environments in the form
of a framework, such that developers could easily create
applications with built-in version control capabilities. This
could be considered as bringing version control to the
context of the application.

Another foreseeable future improvement would be to
incorporate features of social networking, allowing users
to be able to interact beyond the set operation of the
version control systems.

VI. BIBLIOGRAPHY

1. The Source Code Control System. Rochkind, Marc J. 1975. IEEE

Transactions on Software Engineering.

2. Pilato, C, Collins-Sussman, Ben and Fitzpatrick, Brian. Version

Control with Subversion. s.l. : OReilly Media, Inc.,, 2008.

3. RCS - A system for version control. Tichy, Walter F. 7, s.l. : John

Wiley & Sons, Inc., July 1985, Softw. Pract. Exper., Vol. 15, pp. 637--

654. 0038-0644.

4. MacDonald, Josh, Hilfinger, Paul and Semenzato, Luigi. PRCS: The

project revision control system. Lecture Notes in Computer Science.

1998, Vol. 1439, pp. 33-45.

5. Grune, Dick. Concurrent Versions System, A Method for

Independent Cooperation. 1986. techreport.

6. Loeliger, Jon. Version Control with Git: Powerful Tools and

Techniques for Collaborative Software Development. s.l. : O'Reilly

Media, 2009.

7. OSullivan, Bryan and Bryan, OSullivan. Mercurial: The Definitive

Guide. s.l. : OReilly Media, Inc.,, 2009.

8. Darcs: distributed version management in haskell. Roundy, David.

s.l. : ACM, 2005. pp. 1--4.

9. Version Control. Grogg, Jill E. and Weddle, Jeff. 2010. Encyclopedia

of Library and Information Sciences 3rd ed.

10. The history of version control. Ruparelia, Nayan B. 1, s.l. : ACM,

January 2010, SIGSOFT Softw. Eng. Notes, Vol. 35, pp. 5--9. 0163-

5948.

11. Sharick, Paula. The essential guide to VMS utilities and commands:

VMS version 5. s.l. : Van Nostrand Reinhold Co., 1990.

12. Efficient Use of GUIDs. Lutteroth, Christof and Weber, Gerald.

s.l. : IEEE Computer Society, 2008. pp. 115--120.

13. Towards XML version control of office documents. Ronnau,

Sebastian, Scheffczyk, Jan and Borghoff, Uwe M. s.l. : ACM, 2005. pp.

10--19.

14. A Unifying Framework for Version Control in a CAD Environment.

Chou, Hong-Tai and Kim, Won. s.l. : Morgan Kaufmann Publishers

Inc., 1986. pp. 336--344.

15. Computer-Aided Software Engineering in a distributed workstation

environment. Leblang, David B and Chase, Jr. 3, s.l. : ACM, April

1984, SIGSOFT Softw. Eng. Notes, Vol. 9, pp. 104--112. 0163-5948.

16. A study of version control for collaborative CAD. Chang, Zhiyong,

Zhao, Jie and Mo, Rong. s.l. : Springer-Verlag, 2007. pp. 140--148.

17. Modeling concepts for VLSI CAD objects. Batory, D S and Kim,

Won. 3, s.l. : ACM, September 1985, ACM Trans. Database Syst., Vol.

10, pp. 322--346. 0362-5915.

18. Batory, Don S and Kim, Won. Support for Versions of VLSI CAD

Objects. s.l. : University of Texas at Austin, 1985. techreport.

19. Nested composite nodes and version control in an open hypermedia

system. Fernando, Luiz, et al. 6, s.l. : Elsevier Science Ltd., September

1995, Inf. Syst., Vol. 20, pp. 501--519. 0306-4379.

20. Deep hypertext with embedded revision control implemented in

regular expressions. Grishchenko, Victor. s.l. : ACM, 2010. pp. 3:1--

3:10.

21. Modern Revision Control and Configuration Management of

Simulink Models. Sauceda, Jeremias and Kothari, Suraj. Detroit, MI :

SAE 2010 World Congress & Exhibition, 2010. Model-Based Design of

Embedded Systems.

22. Sint, Rolf, Schaffert, Sebastian and Stroka, Stephanie. Combining

Unstructured, Fully Structured and Semi-Structured Information in

Semantic Wikis. Heraklion, Greece : 4th Workshop on Semantic Wikis,

June 2009.

23. Supporting 3D City Modelling, Collaboration and Maintenance

through an Open-Source Revision Control System. Roupé, Mattias and

Johansson, Mikael. 2010. CAADRIA 2010 NEW FRONTIERS. pp.

347-356.

24. A survey and comparison of CSCW groupware applications. Rama,

Jiten and Bishop, Judith. s.l. : South African Institute for Computer

Scientists and Information Technologists, 2006. pp. 198--205.

25. A database approach for managing VLSI design data. Katz, Randy

H. s.l. : IEEE Press, 1982. pp. 274--282.

26. CSCW: history and focus. Grudin, Jonathan. 1994, IEEE, pp. 19-26.

27. Using text animated transitions to support navigation in document

histories. Chevalier, Fanny, et al. s.l. : ACM, 2010. pp. 683--692.

28. Version management of composite objects in CAD databases.

Ahmed, Rafi and Navathe, Shamkant B. 2, s.l. : ACM, April 1991,

SIGMOD Rec., Vol. 20, pp. 218--227. 0163-5808.

29. Supporting distributed collaboration through multidimensional

software configuration management. Chu-Carroll, Mark C and Wright,

James. s.l. : Springer-Verlag, 2003. pp. 40--53.

30. A fine-grained and flexible version control for software artifacts.

Junqueira, Daniel C, Bittar, Thiago J and Fortes, Renata P. s.l. : ACM,

2008. pp. 185--192.

