

Steganography in Microsoft Office documents and ASP pages

Magdalena Pejas
The Warsaw University of Technology

Warsaw, Poland

ABSTRACT

In this paper I describe methods, how to use

steganographic techniques to hide data in MS Office and
Internet files. In the first chapter I present the idea of data
hiding. Basic terms concerning steganography like
steganographic data, function, key and capacity are explained
here. In the second chapter I explain the object oriented
construction of documents, which are created with MS Office
software and with scripts included in dynamic web pages. I put
the emphasis on the observation, how easy is to access wide
range of files and their contents. The third chapter is dedicated
to scripting programming. I draw attention to Visual Basic
scripting language and its features. I include here the description
of example objects and functions used to access basic data,
which can be potentially used to hide secret information. Next
chapter contains my conception how to estimate steganographic
data capacity. Finally, in conclusion I underline the fact, that we
do not really know, what documents and web pages really
contain.

Keywords: Steganography, Scripts, Programming

Language, Object Model, Method, Attribute and Data Capacity.

1. INTRODUCTION

The goal of the author of this paper is to show how

popular electronic documents and Internet pages can be used to
hide secret information. Thanks to their object oriented and very
intuitive structure they can be accessed, modified and even
generated with the help of various scripting languages. One of
the most popular scripting language is Visual Basic script to
construct MS Office documents. For web pages one can choose
from various scripting languages, for example Java Script and
Visual Basic, PHP or Perl. Scripts run under Microsoft
Environment are very easy to write and to learn syntax. Java and
VB Scripts need no special compilers or interpreters. This makes
occasion to use these small programs to hide and extract hidden
information in various documents, data bases, e-mails and
dynamic web pages. It is also possible to send hidden data
continuous stream via the Internet. Every document has very
individual ability to contain additional data. For example
documents full of graphics can hide more hidden content than
text files.

2. STEGANOGRAPHY

Steganography means in Greek covered writing. It has

been used since ancient times to hide secret signals. For example
wooden bars with engraved writing and covered with wax layer
used to serve as steganographic secret channel. Nowadays it can

be easily adapted to informatics. Especially in the age of
information and communication we can imagine, how it can be
easy to put additional invisible data into tremendous data flow
around the world.

The art of steganography can be compared to
cryptography. While in cryptography information or data is only
encrypted and the result of encryption is visible, in
steganography also the fact of data hiding is invisible. This
means, no one can be sure, if a given sample data does contain
any secret content or not. The idea of steganographic system is
shown in Fig. 1.

Fig. 1. The idea of data hiding

Cover data is such data, in which we hide secret data,

message or information. In Fig. 1 it is denoted as C. Message or
information to hide is represented by symbol m. Cover data with
hidden message is in this case called steganographic data,
denoted as S. Function Fsteg to perform data hiding process is
called steganographic function. This function may use
steganographic key K, which is analogical to cryptographic key.
Steganographic capacity is the relative amount of secret data
which can be hidden in cover data of a given size in such a way,
that the difference between the cover data before and after data
hiding process is invisible. For example one can hide 100 bytes
of text in 800 bytes of an image. This is in the case, when we
hide one bit of information in every color component in each
pixel of this example image.

3. THE STRUCTURE OF MS OFFICE

DOCUMENTS AND WEB PAGES

The structure of MS Office documents is based on

hierarchy of objects. Every MS Office document can be easily
opened, read, modified and closed by small programs called
scripts. Then the all elements of the document can be iterated as
elements of an array. Now each element with its parameters is
ready to be accessed and modified. For example a text frame

00101100100010000100

Fsteg(m,c,k)

A text containing variously formatted
words and double spaces.

Example text with variously formatted
words and double spaces.

A text with differently formatted
words and containing double

spaces.

Shapes

00101100100010000100

Fsteg(m,c,k)Fsteg(m,c,k)

A text containing variously formatted
words and double spaces.

Example text with variously formatted
words and double spaces.

A text with differently formatted
words and containing double

spaces.

Shapes

contains plain text and parameters such as: width, height,
vertical and horizontal position, background color, font color
and border color. The textual content of the frame can be
formatted in many ways. It depends on the parameters such as
font name, style, size, font color and background color.

Main objects in MS Office documents can be classified
as follows:

• MS Word - document
o frames
o paragraphs
o tables
o shapes: lines, rectangles, textboxes

• MS PowerPoint - presentation
o slides
o shapes: ovals, rectangles, lines
o images, cliparts

• MS Excel - workbook
o worksheets, cells

• MS Access
o record sets

• MS Outlook
o email content
o file attachments

By analogy main objects in ASP pages can be classified
as follows:

• tags in html: buttons, textboxes
• choice lists, check boxes
• tables
• graphic objects

These elements can be easily generated by scripts in

dynamic web pages, which are based on text files. Scripting
languages have access to such files, by opening, reading and
modifying their content. What is more, dynamic web pages can
be refreshed in a fixed time and thus can have their content
changed with desired frequency.

Thanks to the art of steganography combined with
scripting we can imagine secret data flow as shown in Fig. 2.

Fig 2. Possible steganographic data flow

Data can be freely converted to another data format and

sent via the Internet. Of course data of one type can be hidden in
data of another format, especially in web pages full of graphics.

4. THE POWER OF SCRIPTING

There are several scripting languages such as Java Script,

Visual Basic Script or Perl.
Programs written in these languages give us many

advantages. The most important ones are listed as follows:

• they are easy to implement and run,
• enable learning with the help of macro recording,
• give access to the tree of document objects,
• can generate document content.

First of all Visual Basic and Java scripts are very useful

because of no need to install any additional editor, compiler or
interpreter under Microsoft environment. What is more, in MS
Office documents we can record and play simple example VB
scripts called macros. If we don’t know the name of an object
and its attributes or syntax of its method, we can simply perform
a simulation of object construction and of running its methods.
For example any user of Word application can switch on a
macro and then draw a text frame in the document, change its
size and position, then format its content. Then when the user
switches off the macro, he can open its code in the Visual Basic
editor always available in MS Office Packet.

With the help of scripts we can perform general
operations on directories and files. One can search and filter a
list of files and then read their attributes, for example extension,
size or date of creation. After recognizing the extension of a
given file script can read its contents respectively to the file
type. Text files are opened in another manner than MS Office
ones.

Basic functions used to search and open documents of
various types and to access their basic elements are presented in
the listings below.

Listing 1. Iterating a list of files

Listing 1. presents a method to open a list of files from a

given directory and to display their names. We have here three
objects: ObjFso representing the file system object, objFolder
representing a chosen folder and objFile is for the currently
processed file. The name colFiles represents the set of all files
visible in the chosen directory.

Another method shows how to open objects in MS
Office applications. It is very interesting, that all application
objects are opened in the same manner. Listing 2. shows
functions opening MS Word, Excel, PowerPoint, Access and
Outlook programs. Symbol <AppName> represents one of the
application names. Every instance of a given application is
represented by an object. With the methods of such object we
can open and close program documents or set option if opened
program is visible for the user or not. This last functionality is
very convenient for background batch scripts.

Listing 2. Run & Close applications

Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFolder = objFSO.GetFolder("D:\workingdir")
Set colFiles = objFolder.files
For Each objfile in colFiles

MsgBox(objFile.name)
Next

Set objApp = CreateObject(“<AppName>.Application")
objApp.Visible = False
objApp.Quit

Set objWord = CreateObject(“Word.Application")
objWord.Visible = False
objWord.Quit

Word

Access

Excel

Outlook

PowerPoint

Internet

Word

Access

Excel

Outlook

PowerPoint

InternetInternet

Each application object can be used to open documents
from files directly, as it is shown in Listing 3. This is
analogical for all available MS Office applications. With the
object representing a given application one can open, save and
close MS Office files of all available types.

Listing 3. Opening & Closing documents

Listing 4. Iterating document elements

Having document file, for example Word, PowerPoint or
Excel open, a script can have access to all its contents, for
example frames, paragraphs, shapes or worksheets, respectively.
The object objDocument presented in Listing 4 contains
paragraphs, which are iterated in the collection colParagraphs of
objects. These objects are now easy to be accessed. Now any
application user can extract text and its format. In Listing 5 we
have an example code, how to extract some content from an
object.

Listing 5. Parameters of example document elements

Listing 5 presents a set of example objects, which can be

directly used to hide additional bits of information. Some of
these parameters can be changed only by one bit but other are
less vulnerable to changes, so these changes are not visible by
someone reading document.

By analogy the Internet pages can be generated by
printing contents to a html file. Listing 6 shows an example how
a script can open, read, write and close a text file. Object objFso
has methods not only to open directories, iterate list of files but
also to create or open for reading and writing any text file.

Listing 6. Accessing a text file

Having access to all lines from a given text file, this is

enough to replace the content of any html or asp file to have
information hidden. Another method to manipulate parts of any
web file is to include a script in the body of this file. An example
of simple page content generation is shown in Listing 7.

Listing 7. Manipulating web page content

The syntax, according to which basic elements of web

pages can be generated is presented in Listing 8.

Listing 8. The syntax of example elements in html body

Here we have page elements like font, frame, image and
table. They all have individual attributes. Apart from that there
are additional simple elements like big b, italic i, underline u
which also can be set to hide secret bits of information. A very
specific element header hn can hide a value from one to 24,
because n can be set from 1 to 6 and align a can take one of four
values: „left”, „right”, „center”, „justify”. This makes 24 possibilities
to obtain different kinds of headers.

If a given document element has more flexible
parameters like color or width, than the number of different
possibilities to set is much higher and it is equal to the
multiplication of all setting possibilities of every attribute. This
fact will be important for estimation of relative steganographic
capacity of documents and web pages.

Set objDocument = objWord.Documents.Open(„file.doc”)
Set objWorkBook = objExcel.Workbooks.Open(„file.xls”)
Set objPresentation = objPPT.Presentations.Open(„file.ppt”)
Set objDataBase = objAccess.OpenCurrentDatabase(„file.mdb”)
objDocument.SaveAs(strPath1)
objWorkBook.SaveAs(strPath1)
objPresentation.SaveAs(strPath1)
objDocument.Close
objWorkBook.Close
objPresentation.Close

Set colParagraphs = objDocument.Paragraphs
iParagraphs=colParagraphs.Count
For iP=0 to iParagraphs-1

Set objParagraph=colParagraphs(iP)
MsgBox(objParagraph.name)

Next

objParagraph.Range.Text
objParagraph.Shading.Texture
objFrame.Range.Text

objShape.Left
objShape.Top
objShape.Width
objShape.Height
objShape.Fill.ForeColor.RGB
objShape.Fill.Transparency
objShape.HasTextFrame
objShape.TextFrame
objShape.TextFrame.HasText
objShape.TextFrame.TextRange.Text

objWorkSheet.Cells(iR,iC)

Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile(„file.txt”, ForReading)
Do Until objFile.AtEndOfStream
 strLines = strLines & objFile.ReadLine
Loop
objFile.Close

Set objFile = objFSO.OpenTextFile(„file1.txt”, ForWriting)
objFile.Write(strLines)
objFile.Close

<script type="text/javascript">
function f(form)
{
 if (form.checkbox1.value=="On")
 {
 strHtmlText=„<table>….</table>”;
 Document.write(strHtmlText);
 }
}
</script>

<hn align=„a” ></hn>

… <i>…</i> <u>…</u>
<blink>...</blink>

<frame bordercolor="c" scrolling="scr" noresize="noresize"
marginwidth="x" marginheight="y" />,

<img src=„image.gif„ width=„w” height=„h” border=„n ”
alt=„at„ align=„a”/>

<table width=„w” height=„h” border=„b” bordercolor= „bc”
bgcolor=„bgc” cellpadding=„cp” align=„a”>

Another example ASP script presents how to access

image pixels. It is shown in Listing 9.

Listing 9. Direct access to the colors of a bitmap

This script is written also in Visual Basic language and

included as ASP code into a web page. It uses system objects to
open bitmaps from files. Object myBitmap is in fact a matrix of
objects representing pixel colors. Thanks to methods GetPixel and
SetxPixel a code writer can access every color component of each pixel
of any bitmap.

Many kinds of scripting languages provide also useful
basic functions, such as:

• read and write any file,
• split a string into substrings,
• convert a string to the array of characters,
• convert a character to integer and vice versa,
• get and set bit mask.

These operations are basic for steganography. When we

have simple data which are not objects but values of a given
type like string or integer, they can be directly used to hide
additional bits of information.

Listing 10. Operations on the string and integer values

Listing 10 contains basic scripting functions which can

be run on basic data with types like string strVal, character cVal
or integer value iVal. With these functions we can split text into
words, or select a given part from a text or a word. Thanks to
function Asc and Chr one can calculate the ASCI code of a
given single character and vice versa. Apart from that it is
possible to get or set bit masks of single integer values.

5. STEGANOGRAPHIC CAPACITY OF
DOCUMENTS AND WEB PAGES

To estimate document steganographic capacity one has

to find all document basic elements and investigate their data
type. For a given data type we have specific relative
steganographic capacity. Then the total capacity of a given
document is the sum of unitary capacities of all basic document
or page elements.

Eq. (1) represents the calculation of the total

steganographic capacity of a PowerPoint presentation. The
presentation consists of slides, which contain shapes. As shown
in the second chapter of this paper in Listing 5, each Shape
object has several attributes. Each of them has individual
capacity depending on the binary size of its value. Value C is
the relative steganographic capacity of a given basic attribute Ai
and S is for the size of this attribute value. For example for type
color (0..255) typical estimation is 1/8, what means one bit per
one byte.

Eq. (2) presents analogical calculation for Word
documents and the last one, Eq. (3) represents calculation for
Excel workbooks.

By analogy one can calculate steganographic capacity of
a web page. The total capacity is equal to the sum of individual
capacities of page elements. Eq. (4) describes the summarization
of capacities of particular forms containing elements like
buttons, text boxes or tables and images.

Eq. 5 represents the relation between total

steganographic capacity of a web page and componential
capacities of its elements and the frequency of page refreshing.

iVal=Asc(cVal)
cVal=Chr(iVal)
iVal And bVal
iVal mod iMod
arrVal=Split(strVal,strSeparator)
strVal1=Mid(strVal,Starti,iOffset)
strVal1=Left(strVal,iLength)
strVal1=Right(strVal,iLength)

<body>
<%@ Page Language="VB" %>
<%@ Import Namespace="System.Drawing" %>
<script runat="server">
 strPath=Server.MapPath("images/imageflip.jpg")
 myBitmap = _
 New Bitmap(System.Drawing.Image.FromFile(strPath))
 For Y = 0 To myBitmap.Height - 1
 For X = 0 To myBitmap.Width – 1
 objColor=myBitmap.GetPixel(X, Y)
 R=objColor.R
 G=objColor.G
 B=objColor.B
 objColor1=Color.FromArgb(R1, G1, B1)
 myBitmap.SetPixel(X, Y, objColor1)
 Next
 Next
 myBitmap.Save(Response.OutputStream, _
 Imaging.ImageFormat.Jpeg)
 Response.Flush()
</script>
</body>Response.ContentType = "image/jpeg„

ΣΣiiPP==11

PPrrssnnttss
ΣΣiiss==11

SSll iiddeess
ΣΣiisshh==11

SShhaappeess
ΣΣiiAA==11

AAttttrriibbuutteess ((CC((iiAA))**SS ((iiAA))))
((11))

ΣΣiiDD==11

DDooccss ((SSPP ++SSTT ++SSFF))

 SSPP==ΣΣiiPP==11

PPaarraaggrraapphhss ((CCttxxtt**SS ((iiPP))))

 SSTT==ΣΣiiTT==11

TTaabblleess
ΣΣiiCC==11

CCoolluummnnss
ΣΣiiRR==11

RRoowwss ((CC((iiCC))**SS ((iiCC,,iiRR))))

 SSFF==ΣΣiiFF==11

FFrraammeess ((CCttxxtt**SS ((iiFF))))

((22))

 ΣΣiiWW==11

WWrrbbkkss
ΣΣiiWWss==11

WWoorrkksshheeeettss
ΣΣiiCC==11

CCoolluummnnss
ΣΣiiRR==11

RRoowwss CC((iiCC))**SS((iiCC,,iiRR))

((33))

SSIItteemm==ΣΣiiFF==11
FFoorrmmss

ΣΣii II==11
IItteemmss

ΣΣiiAA==11
AAttttrriibbuutteess ((CC((iiAA))**SS ((iiAA))))

SSTTaagg==ΣΣiiTT==11

TTaaggss
ΣΣiiAA==11

AAttttrriibbuutteess ((CC((iiAA))**SS ((iiAA))))

SSTTaabb== ΣΣiiTTaa==11

TTaabblleess ΣΣiiCC==11
CCoolluummnnss

ΣΣiiRR==11
RRoowwss ((CC((iiCC))**SS ((iiCC,,iiRR))))

SSIImmgg== ΣΣii IImm==11

IImmaaggeess ΣΣiiYY==11
HHeeiigghhtt

ΣΣiiXX==11
WWiiddtthh ((11** //88))

((44))

CCsstteegg ~~ ((SSIItteemm++SSTTaagg++SSTTaabb++SSIImmgg))//TTrreeffrreesshh

((55))

TTrreeffrreesshh represents the time between two sequential refreshing
moments. This frequency can be easily set by Java Script, but
the time given for successful refresh depends on the size of page
contents and on the network and server efficiency.

If we imagine, that during every refreshing we change
page contents by adding bits of secret information then we have
current secret data flow.

All types of single attributes of objects can be classified
into the following families of similar types:
1) discrete set with law number of values,
2) size, average from 10x10 to 600x800 pixels,
3) color, average values range from 0 to 255,
4) text containing words and blank characters,
5) shapes with solid color,
6) typical images in RGB format.

Class of data types 1

The first type includes attributes such as text or header
alignment. In such a value one can code little information. If
there are four possible text alignments, we can code here two
bits of information. Header or text size can have more possible
values. Although font size can be set from 8 even to 72, typical
range is from 8 to 16, so the text wouldn’t look strange. If we
assume, that every paragraph can have different font size than in
such text we can hide number of paragraphs multiplied by 3 bits
of information.

Class of data types 2

Parameters such as position or size are more flexible and
less vulnerable to noticing in documents full of frames, shapes
and images. If we assume that we can change position and size
in every dimension by +/- 2 points than we obtain 4x4 values per
each shape what gives 4 bits multiplied by the amount of all
shape objects of hidden information size.

Class of data types 3

Any font or background color can be modified by +/-1
per 255 possible shades of grey, so the changes would be hardly
to notice. It makes 1 bit per any attribute associated with sold
color.

Class of data types 4

Objects containing text are very interesting for
estimation of steganographic capacity. When we hide
information in double spaces, then we have steganographic
relative capacity equal to the number of words divided by the
number of characters in the whole text. In this paper it is about
3200 words / 15700 characters with spaces what gives
approximate capacity equal to 22%.

Class of data types 5

Solid shapes can have steganographic capacity
comparable to parameters describing colors of fonts, background
or characters. This is 1 bit per whole shape, what gives total
capacity equal to the number of shapes multiplied by one bit or
in other words number of shapes divided by 8 in bytes.

It is interesting, that in web pages we have not only
object analogical to the elements of word documents, but also
such pages can contain long streams of blank characters which
are not visible on opened page. If we use tabulator, space and
return caret it makes 3 combinations per each character of the
invisible part of a html file. If we combine them into pairs it
makes 9 values to encode in two sequential blank characters.

Class of data types 6
Finally, about the most interesting object for

steganography; pictures and images. The simplest way to hide
secret information in a bitmap is to change every pixel value in
every color content by +/-1. This makes changes almost
invisible and the relative capacity of image in this case is 1/8. If
an image is full of contrasts, has very little smoothness, than we
can dare to hide even 3 bits of information in every color
ingredient, what gives the relative image capacity equal to 3/8.
As human eye is the least sensitive to blue color changes, one
can hide more bits in blue component than in red one.

Of course there are more sophisticated methods of hiding
data in images, for example in Velvet transform or Fourier
transform but this is beyond the scope of this paper.

6. CONCLUSIONS

In this paper I showed a new point of view on

steganography. I presented a concept how to apply script
programming and knowledge about the structure of various
electronic documents to hide or detect hidden content. I drew
attention to the observation, that script languages especially
these running in Microsoft environment are easy to develop and
can freely spread in every office and through networks.

I also showed a concept how easily we can calculate
potential steganographic capacity of documents of various types.
However it doesn’t mean, that we can predict steganographic
content, or that we will not make any mistake due to false alarm.
This paper doesn’t contain all possible methods of data hiding in
files but this I leave for the recipients’ imagination.

I must emphasis once again, that it is almost impossible
to determine if a given document, full of blinking changing
colors and advertisements, like most web pages or Power Point
presentations, does contain any hidden additional bits of secret
information or not.

7. REFERENCES

[1] http://www.microsoft.com/poland/technet/scriptcenter/.
[2] http://www.w3schools.com/VBscript/.
[3] http://www.tizag.com/vbscriptTutorial/.
[4] P. Wayner, Disappearing Cryptography: Being and

Nothingness on the Net, 1996.
[5] M. Owens, “ A Discussion of Covert Channels and

Steganography” , Sans InfoSec Reading Room, 2002.

